Research and Innovation Articles
How to Cite
González, G. A. (2001). Construcáo de solucóes solitónicas das equacóes de Einstein. Revista Integración, Temas De matemáticas, 19(1), 23–36. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/742
Abstract
Se faz o estudo do Método do Espalhamento Inverso para a construcáo de solucóes das equacóes de Einstein no vazio. A construcáo de solucóes para o caso no qual a solugáo particular é urna métrica diagonal é apresentada brevemente. Finalmente, expressoes explícitas para solucóes com dois sólitons sao apresentadas.
Downloads
Download data is not yet available.
References
[1] Kramer, D., Stephani, H., Herlt, E. and McCallum, M.Exact Solutions ofEinstein’s Field Equations. (Cambridge University Press, 1980).
[2] Belinsky, V. A. and Zakharov, V. E. “Integration of the Einstein Equations bymeans of the Inverse Scattering Technique and Construction of Exact SolitonSolutions”.Zh. Eksp. Teor. Fis.75, 1955 (1978). [Sov. Phys. JETP48, 985(1978).]
[3] Belinsky, V. A. and Zakharov, V. E. “Stationary Gravitational Solitons withAxial Symmetry”.Zh. Eksp. Teor. Fis.77, 3 (1979). [Sov. Phys. JETP50,1 (1979).]
[4] Chaudhuri, S. and Das, K. C.Two-soliton Solutions of Axially SymmetricMetrics. Gen. Rel. Grav. 29, 75 (1997).[5] Letelier, P. S. “Cylindrically Symmetric Solitary Wave Solutions to the Ein-stein Equations”.J. Math. Phys.25, 2675 (1984).
[6] Letelier, P. S. “Static and Stationary Multiple Soliton Solutions to the EinsteinEquations”.J. Math. Phys.26, 467 (1985).
[7] Letelier, P. S. “Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a Nondiagonal Seed Solution”.J. Math. Phys.27, 564 (1986).
[8] Letelier, P. S.On Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a General Seed Solution. Class. Quantum Grav. 6, 875 (1989).
[9] Letelier, P. S. and Oliveira, S. R. “Exact Selfgraviting Disks and Rings: aSolitonic Approach”.J. Math. Phys.28, 165 (1987).
[10] McCrea, J. D. “Static Axially Symmetric Gravitational Fields with Shell Sources”.J. Phys.A9, 697 (1976).
[11] Weyl, H.Zur Gravitationstheorie. Ann. Physik 54, 117 (1917).
[12] Weyl, H.Bemerkung ̈Uber die Axialsymmetrischen L ̈osungen der Einstein-schen Gravitationsgleichungen. Ann. Physik 59, 185 (1919).
[13] Zipoy, D. M. “Topology of Some Spheroidal Metrics”.J. Math. Phys. 7, 1137(1966).
[14] Voorhees, B. H. “Static Axially Symmetric Gravitational Fields”.Phys. Rev.D2, 2119 (1970).
[15] Bonnor, W. B. and Sackfield, A. “The Interpretation of Some Spheroidal Met-rics”.Comm. Math. Phys.8, 338 (1968).
[16] Chazy, J. “Sur le Champ de Gravitation de Deux Masses Fixes dans la Th ́eoriede la Relativit ́e”.Bull. Soc. Math. France.52, 17 (1924).
[17] Curzon, H. E. J. “Cylindrical Solutions of Einstein’s Gravitation Equations”.Proc. London Math. Soc.23, 477 (1924).
[18] Demia ́nski, M. and Newmann, E. T. “A Combined Kerr-NUT Solution of theEinstein Field Equations”.Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.14, 653 (1966).
[19] Newmann, E., Tamburino, L. and Unti, T. “Empty-Space Generalization ofthe Schwarzschild Metric”.J. Math. Phys.4, 915 (1963).
[2] Belinsky, V. A. and Zakharov, V. E. “Integration of the Einstein Equations bymeans of the Inverse Scattering Technique and Construction of Exact SolitonSolutions”.Zh. Eksp. Teor. Fis.75, 1955 (1978). [Sov. Phys. JETP48, 985(1978).]
[3] Belinsky, V. A. and Zakharov, V. E. “Stationary Gravitational Solitons withAxial Symmetry”.Zh. Eksp. Teor. Fis.77, 3 (1979). [Sov. Phys. JETP50,1 (1979).]
[4] Chaudhuri, S. and Das, K. C.Two-soliton Solutions of Axially SymmetricMetrics. Gen. Rel. Grav. 29, 75 (1997).[5] Letelier, P. S. “Cylindrically Symmetric Solitary Wave Solutions to the Ein-stein Equations”.J. Math. Phys.25, 2675 (1984).
[6] Letelier, P. S. “Static and Stationary Multiple Soliton Solutions to the EinsteinEquations”.J. Math. Phys.26, 467 (1985).
[7] Letelier, P. S. “Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a Nondiagonal Seed Solution”.J. Math. Phys.27, 564 (1986).
[8] Letelier, P. S.On Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a General Seed Solution. Class. Quantum Grav. 6, 875 (1989).
[9] Letelier, P. S. and Oliveira, S. R. “Exact Selfgraviting Disks and Rings: aSolitonic Approach”.J. Math. Phys.28, 165 (1987).
[10] McCrea, J. D. “Static Axially Symmetric Gravitational Fields with Shell Sources”.J. Phys.A9, 697 (1976).
[11] Weyl, H.Zur Gravitationstheorie. Ann. Physik 54, 117 (1917).
[12] Weyl, H.Bemerkung ̈Uber die Axialsymmetrischen L ̈osungen der Einstein-schen Gravitationsgleichungen. Ann. Physik 59, 185 (1919).
[13] Zipoy, D. M. “Topology of Some Spheroidal Metrics”.J. Math. Phys. 7, 1137(1966).
[14] Voorhees, B. H. “Static Axially Symmetric Gravitational Fields”.Phys. Rev.D2, 2119 (1970).
[15] Bonnor, W. B. and Sackfield, A. “The Interpretation of Some Spheroidal Met-rics”.Comm. Math. Phys.8, 338 (1968).
[16] Chazy, J. “Sur le Champ de Gravitation de Deux Masses Fixes dans la Th ́eoriede la Relativit ́e”.Bull. Soc. Math. France.52, 17 (1924).
[17] Curzon, H. E. J. “Cylindrical Solutions of Einstein’s Gravitation Equations”.Proc. London Math. Soc.23, 477 (1924).
[18] Demia ́nski, M. and Newmann, E. T. “A Combined Kerr-NUT Solution of theEinstein Field Equations”.Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.14, 653 (1966).
[19] Newmann, E., Tamburino, L. and Unti, T. “Empty-Space Generalization ofthe Schwarzschild Metric”.J. Math. Phys.4, 915 (1963).