Research and Innovation Articles
A brief description of operators associated to the quantum harmonic oscillator on Schatten-von Neumann classes
Published 2018-07-22
Keywords
- Harmonic oscillator,
- Fourier multiplier,
- Hermite multiplier,
- nuclear operator,
- traces
How to Cite
Cardona, D. (2018). A brief description of operators associated to the quantum harmonic oscillator on Schatten-von Neumann classes. Revista Integración, Temas De matemáticas, 36(1), 49–57. https://doi.org/10.18273/revint.v36n1-2018004
Abstract
In this note we study pseudo-multipliers associated to the harmonic oscillator (also called Hermite multipliers) belonging to Schatten classes on L2(Rn). We also investigate the spectral trace of these operators.
Downloads
Download data is not yet available.
References
[1] Bagchi S. and Thangavelu S., “On Hermite pseudo-multipliers”, J. Funct. Anal. 268 (2015), No. 1, 140–170,
[2] Barraza E.S. and Cardona D., “On nuclear Lp-multipliers associated to the Harmonic oscillator”, in Analysis in Developing Countries, Springer Proceedings in Mathematics & Statistics, Springer (2018), M. Ruzhansky and J. Delgado (Eds), to appear.
[3] Cardona D. and Barraza E.S., “Characterization of nuclear pseudo-multipliers associated to the harmonic oscillator”, to appear in, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys (2018), arXiv:1709.07961.
[4] Cardona D. and Ruzhansky M., “Hörmander condition for pseudo-multipliers associated to the harmonic oscillator”, preprint.
[5] Delgado J., A trace formula for nuclear operators on Lp, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications 205, Schulze, B.W., Wong, M.W. (eds.), Birkhäuser, Basel (2010), 181–193.
[6] Delgado J., “The trace of nuclear operators on Lp(μ) for -finite Borel measures on second countable spaces”, Integr. Equ. Oper. Theory 68 (2010), No- 1, 61–74.
[7] Delgado J., “On the r-nuclearity of some integral operators on Lebesgue spaces”, Tohoku Math. J. (2) 67 (2015), No. 1, 125–135.
[8] Delgado J., RuzhanskyM. andWang B., “Approximation property and nuclearity on mixednorm Lp, modulation and Wiener amalgam spaces”, J. Lond. Math. Soc.(2) 94 (2016), 391–408.
[9] Delgado J., Ruzhansky M. and Wang B., “Grothendieck-Lidskii trace formula for mixednorm Lp and variable Lebesgue spaces”, to appear in J. Spectr. Theory, arXiv:1604.00198.
[10] Delgado J. and Ruzhansky M., “Schatten-von Neumann classes of integral operators”, arXiv:1709.06446.
[11] Epperson J., “Hermite multipliers and pseudo-multipliers”, Proc. Amer. Math. Soc. 124 (1996), No. 7, 2061–2068.
[12] Grothendieck A., “Produits tensoriels topologiques et espaces nucléaires”, in: Mem. Amer. Math. Soc. 16, Providence, 1955.
[13] Pietsch A., Operator ideals, Mathematische Monographien 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
[14] Pietsch A., History of Banach spaces and linear operators, Birkhäuser Boston Inc., Boston, 2007.
[15] Prugove˘cki E., Quantum mechanics in Hilbert space, Pure and Applied Mathematics 92, Academic Press Inc., New York-London, 1981.
[16] Reinov O.I. and Latif Q., “Grothendieck-Lidskii theorem for subspaces of Lp-spaces”, Math. Nachr. 286 (2013), No. 2-3, 279–282.
[17] Ruzhansky M. and Tokmagambetov N., “Nonharmonic analysis of boundary value problems”, Int. Math. Res. Notices 12 (2016), 3548–3615.
[18] RuzhanskyM. and Tokmagambetov N., “Nonharmonic analysis of boundary value problems without WZ condition”, Math. Model. Nat. Phenom. 12 (2017), No. 1, 115–140.
[19] Simon B., “Distributions and their Hermite expansions”, J. Math. Phys. 12 (1971), No. 1, 140–148.
[20] Stempak K., “Multipliers for eigenfunction expansions of some Schrödinger operators”, Proc. Amer. Math. Soc. 93 (1985), No. 3, 477–482.
[21] Stempak, K. and Torrea J.L., “On g-functions for Hermite function expansions”, Acta Math. Hung. 109 (2005), No. 1-2, 99–125.
[22] Stempak K. and Torrea J.L., “BMO results for operators associated to Hermite expansions”, Illinois J. Math. 49 (2005), No. 4, 1111–1132.
[23] Thangavelu S., Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton University Press, Princeton, 1993.
[24] Thangavelu S., “Hermite and special Hermite expansions revisited”, Duke Math. J. 94 (1998), No. 2, 257–278.
[25] Thangavelu S., “Multipliers for Hermite expansions”, Rev. Mat. Iberoam. 3 (1987), 1–24.
[26] Thangavelu S., “Summability of Hermite expansions I”, Trans. Amer. Math. Soc. 314 (1989), No. 1, 119–142.
[27] Thangavelu S., “Summability of Hermite expansions II”, Trans. Amer. Math. Soc. 314 (1989), No. 1, 143–170.
[28] Thangavelu S., “Hermite expansions on R2n for radial functions”, Rev. Mat. Iberoam. 6 (1990), No. 2, 61–73.
[2] Barraza E.S. and Cardona D., “On nuclear Lp-multipliers associated to the Harmonic oscillator”, in Analysis in Developing Countries, Springer Proceedings in Mathematics & Statistics, Springer (2018), M. Ruzhansky and J. Delgado (Eds), to appear.
[3] Cardona D. and Barraza E.S., “Characterization of nuclear pseudo-multipliers associated to the harmonic oscillator”, to appear in, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys (2018), arXiv:1709.07961.
[4] Cardona D. and Ruzhansky M., “Hörmander condition for pseudo-multipliers associated to the harmonic oscillator”, preprint.
[5] Delgado J., A trace formula for nuclear operators on Lp, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications 205, Schulze, B.W., Wong, M.W. (eds.), Birkhäuser, Basel (2010), 181–193.
[6] Delgado J., “The trace of nuclear operators on Lp(μ) for -finite Borel measures on second countable spaces”, Integr. Equ. Oper. Theory 68 (2010), No- 1, 61–74.
[7] Delgado J., “On the r-nuclearity of some integral operators on Lebesgue spaces”, Tohoku Math. J. (2) 67 (2015), No. 1, 125–135.
[8] Delgado J., RuzhanskyM. andWang B., “Approximation property and nuclearity on mixednorm Lp, modulation and Wiener amalgam spaces”, J. Lond. Math. Soc.(2) 94 (2016), 391–408.
[9] Delgado J., Ruzhansky M. and Wang B., “Grothendieck-Lidskii trace formula for mixednorm Lp and variable Lebesgue spaces”, to appear in J. Spectr. Theory, arXiv:1604.00198.
[10] Delgado J. and Ruzhansky M., “Schatten-von Neumann classes of integral operators”, arXiv:1709.06446.
[11] Epperson J., “Hermite multipliers and pseudo-multipliers”, Proc. Amer. Math. Soc. 124 (1996), No. 7, 2061–2068.
[12] Grothendieck A., “Produits tensoriels topologiques et espaces nucléaires”, in: Mem. Amer. Math. Soc. 16, Providence, 1955.
[13] Pietsch A., Operator ideals, Mathematische Monographien 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
[14] Pietsch A., History of Banach spaces and linear operators, Birkhäuser Boston Inc., Boston, 2007.
[15] Prugove˘cki E., Quantum mechanics in Hilbert space, Pure and Applied Mathematics 92, Academic Press Inc., New York-London, 1981.
[16] Reinov O.I. and Latif Q., “Grothendieck-Lidskii theorem for subspaces of Lp-spaces”, Math. Nachr. 286 (2013), No. 2-3, 279–282.
[17] Ruzhansky M. and Tokmagambetov N., “Nonharmonic analysis of boundary value problems”, Int. Math. Res. Notices 12 (2016), 3548–3615.
[18] RuzhanskyM. and Tokmagambetov N., “Nonharmonic analysis of boundary value problems without WZ condition”, Math. Model. Nat. Phenom. 12 (2017), No. 1, 115–140.
[19] Simon B., “Distributions and their Hermite expansions”, J. Math. Phys. 12 (1971), No. 1, 140–148.
[20] Stempak K., “Multipliers for eigenfunction expansions of some Schrödinger operators”, Proc. Amer. Math. Soc. 93 (1985), No. 3, 477–482.
[21] Stempak, K. and Torrea J.L., “On g-functions for Hermite function expansions”, Acta Math. Hung. 109 (2005), No. 1-2, 99–125.
[22] Stempak K. and Torrea J.L., “BMO results for operators associated to Hermite expansions”, Illinois J. Math. 49 (2005), No. 4, 1111–1132.
[23] Thangavelu S., Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton University Press, Princeton, 1993.
[24] Thangavelu S., “Hermite and special Hermite expansions revisited”, Duke Math. J. 94 (1998), No. 2, 257–278.
[25] Thangavelu S., “Multipliers for Hermite expansions”, Rev. Mat. Iberoam. 3 (1987), 1–24.
[26] Thangavelu S., “Summability of Hermite expansions I”, Trans. Amer. Math. Soc. 314 (1989), No. 1, 119–142.
[27] Thangavelu S., “Summability of Hermite expansions II”, Trans. Amer. Math. Soc. 314 (1989), No. 1, 143–170.
[28] Thangavelu S., “Hermite expansions on R2n for radial functions”, Rev. Mat. Iberoam. 6 (1990), No. 2, 61–73.