Revista Integración, temas de matemáticas.
Vol. 36 No. 2 (2018): Revista Integración, temas de matemáticas
Research and Innovation Articles

Numerical solution of an inverse problem by applying a continuous genetic algorithm

Stefan Berres
Universidad Católica de Temuco, Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Temuco, Chile.
Aníbal Coronel
Universidad del Bío Bío, Departamento de Ciencias Básicas, Facultad de Ciencias, Chillán, Chile.
Richard Lagos
Universidad de Magallanes, Departamento de Matemática, Facultad de Ciencias, Punta Arenas, Chile.

Published 2018-12-11

Keywords

  • Continuous genetic algorithm,
  • calibration,
  • parameter identification,
  • sedimentation

How to Cite

Berres, S., Coronel, A., & Lagos, R. (2018). Numerical solution of an inverse problem by applying a continuous genetic algorithm. Revista Integración, Temas De matemáticas, 36(2), 67–81. https://doi.org/10.18273/revint.v36n2-2018001

Abstract

In this paper we consider the problem of flux determination in a scalar conservation law modeling the phenomenon of sedimentation. The experimental observation data used for the calibration consist of a solid concentration profile at a fixed time. The identification problem is formulated as an optimization one, where the distance between the profiles of the model simulation and observation data is minimized by a least squares cost function. The direct problem is approximated by a monotone finite volume scheme. The numerical solution of the calibration problem is obtained by a continuous genetic algorithm. Numerical results are presented in order to validate the efficiency of the proposed algorithm.

 

Downloads

Download data is not yet available.

References

[1] Berres S., Bürger R., Coronel A. and Sepúlveda M., “Numerical identification of parameters for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated suspensions”, Appl. Numer. Math. 52 (2005), No. 4, 311–337.

[2] Bürger R., Coronel A. and Sepúlveda M., “A numerical descent method for an inverse problem of a scalar conservation law modelling sedimentation”, in Numerical Mathematics and Advanced Applications: Numerical Mathematics and Advanced Applications: Proceedings ENUMATH 2007, Springer Verlag, Providence, RI (2008), 225–232.

[3] Bürger R., Coronel A. and Sepúlveda M., “Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation”, in Hyperbolic problems: theory, numerics and applications, volume 67 of Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI (2009), 445–454.

[4] Bürger R. andWendlandW. L., “Sedimentation and suspension flows: historical perspective and some recent developments”, J. Engrg. Math. 41 (2001), No. 2-3, 101–116.

[5] Bustos M. C., Concha F., Bürger R. and Tory E. M., Sedimentation and thickening, vol 8 of Mathematical Modelling: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1999.

[6] Concha F. and Bürger R., “Thickening in the 20th century: a historical perspective”, Minerals & Metallurgical Process 20 (2003), No. 2, 57–67.

[7] Engquist B. and Osher S., “One-sided difference approximations for nonlinear conservation laws”, Math. Comput. 36 (1981), 321–351.

[8] Eymard R., Gallouët T. and Herbin R., “Finite volume methods”, in Handbook of numerical analysis, Volume VII: Handb. Numer. Anal. North-Holland, Amsterdam, (2000), 713–1020.

[9] Fogel L.J., Owens A.J. and Walsh M.J., Artificial intelligence through simulated evolution, Wiley, Chichester, WS, UK, 1966.

[10] Gaffney J., Pearce C. and Green D., “Binary versus real coding for genetic algorithms: A false dichotomy?”, ANZIAM J. 51 (EMAC2009), C347–C359, 2010.

[11] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[12] Hansen N., Auger A., Ros R., Finck S. and Pošík P., “Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009”, in Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’10, New York, NY, USA, (2010), 1689–1696.

[13] Haupt R.L. and Haupt S.E., Practical genetic algorithms, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2004.

[14] Holland J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA, 1975.

[15] Koza J.R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

[16] Kynch G.J., “A theory of sedimentation”, Trans. Faraday Soc 48 (1952), 166–176.

[17] LeVeque R.J., Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich, Second edition, Basel: Birkhäuser Verlag, 1992.

[18] Michalewicz Z., Genetic algorithms + data structures = evolution programs, Artificial Intelligence, Springer-Verlag, Berlin, 1996.

[19] Rechenberg I., Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution, Fromman-Hozlboog Verlag, Stuttgart, 1973.

[20] Sweeney M.W. and Kabouris J.C., “Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities”, Water Environment Research 88 (2016), 1279–1298.

[21] Sivanandam S. N. and Deepa S. N., Introduction to genetic algorithms, Springer, Berlin, 2008.

[22] Tan Ch. K., Bao J. and Bickert G., “A study on model predictive control in paste thickeners with rake torque constraint´”, Mineral Engineering 105 (2017), 52–62.

[23] Toro E.F., Riemann solvers and and numerical methods for fluid dynamics: A practical introduction, Third edition, Springer-Verlag, Berlin, 2009.

[24] Xu N., Wang X., Zhou J., Wang Q., Feng W. and Peng X., “An intelligent control strategy for thickening process”, International Journal of Mineral Processing 142 (2015), 56–62.