Revista Integración, temas de matemáticas.
Vol. 37 Núm. 2 (2019): Revista Integración, temas de matemáticas
Artículo Original

Sobre la traza nuclear de operadores integrales de Fourier

Duván Cardona
Ghent University, Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent, Belgium.

Publicado 2019-07-29

Palabras clave

  • Operador integral de Fourier,
  • operador nuclear,
  • traza nuclear,
  • traza espectral,
  • variedad compacta homogénea

Cómo citar

Cardona, D. (2019). Sobre la traza nuclear de operadores integrales de Fourier. Revista Integración, Temas De matemáticas, 37(2), 219–249. https://doi.org/10.18273/revint.v37n2-2019002

Resumen

En esta investigación se caracteriza la r-nuclearidad de operadores
integrales de Fourier en espacios de Lebesgue. Las nociones de traza nuclear y operador nuclear sobre espacios de Banach son conceptos análogos a aquellas de traza espectral y de operador de clase traza en espacios de Hilbert. Operadores integrales de Fourier, por otro lado, surgen para expresar soluciones a problemas de Cauchy hiperbólicos o para estudiar la función espectral asociada a un operador geométrico sobre una variedad diferenciable. Los operadores
integrales de Fourier se consideran actuando sobre Rn, el grupo discreto Zn, el toro de dimensión n y finalmente, espacios simétricos (variedades compactas homogéneas). Se presentan ejemplos explícitos de tales caracterizaciones sobre Zn, el grupo especial unitario SU(2), y el plano complejo proyectivo CP2. Los resultados principales de la presente investigación se aplican en la caracterización de operadores pseudo diferenciales nucleares definidos mediante el proceso de cuantificación de Wey l.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Akylzhanov R., Nursultanov E. and Ruzhansky M., “Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and Lp− Lq Fourier multipliers on compact homogeneous manifolds”, arXiv:1504.07043.

[2] Asada K. and Fujiwara D., “On some oscillatory integral transformations in L2(Rn)”, Japan J. Math. (N.S.) 4 (1978), No. 2, 299–361.

[3] Barraza E.S. and Cardona D., “On nuclear Lp-multipliers associated to the Harmonic oscillator”, in Analysis in Developing Countries, Springer Proceedings in Mathematics & Statistics (eds. Ruzhansky M. and Delgado J.), Springer (2018), 31–41.

[4] Bronzan J. B., “Parametrization of SU(3)”, Phys. Rev. D. 38 (1988), No. 6, 1994–1999.

[5] Botchway L., Kibiti G. and Ruzhansky M., “Difference equations and pseudo-differential operators on Zn”, arXiv:1705.07564.

[6] Buzano E. and Toft J., “Schatten-von Neumann properties in the Weyl calculus”, J. Funct. Anal. 259 (2010), No. 12, 3080–3114.

[7] Cardona D. and Barraza E.S., “Characterization of nuclear pseudo-multipliers associated to the harmonic oscillator”, UPB, Scientific Bulletin, Series A: Applied Mathematics and Physics 80 (2018), No. 4, 163–172.

[8] Cardona D., “A brief description of operators associated to the quantum harmonic oscillator on Schatten-von Neumann classes”, Rev. Integr. temas mat. 36 (2018), No. 1, 49–57.

[9] Cardona D., “Nuclear pseudo-differential operators in Besov spaces on compact Lie groups”, J. Fourier Anal. Appl. 23 (2017), No. 5, 1238–1262.

[10] Coriasco S. and Ruzhansky M., “On the boundedness of Fourier integral operators on Lp(Rn)”, C. R. Math. Acad. Sci. Paris 348 (2010), No. 15–16, 847–851.

[11] Coriasco S. and Ruzhansky M., “Global Lp continuity of Fourier integral operators”, Trans. Amer. Math. Soc. 366 (2014), No. 5, 2575–2596.

[12] Delgado J., “Estimations Lp pour une classe d’opŕateurs pseudo-differentiels dans le cadre du calcul de Weyl-Hörmander”, J. Anal. Math. 100 (2006), 337–374.

[13] Delgado J., “A trace formula for nuclear operators on Lp”, in textitPseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory:Advances and Applications vol. 205 (eds. Schulze B.W. and Wong M.W.), Birkhäuser Basel (2009), 181–193.

[14] Delgado J. and Wong M.W.,“Lp-nuclear pseudo-differential operators on Z and S1”, Proc. Amer. Math. Soc. 141 (2013), No. 11, 3935–394.

[15] Delgado J.,“The trace of nuclear operators on Lp(μ) for -finite Borel measures on second countable spaces”, Integral Equations Operator Theory 68 (2010), No. 1, 61–74.

[16] Delgado J. and Ruzhansky M., “Lp-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups” , J. Math. Pures Appl. (9), 102 (2014), No. 1, 153–172.

[17] Delgado J. and RuzhanskyM., “Schatten classes on compact manifolds: Kernel conditions”, J. Funct. Anal. 267 (2014), No. 3, 772–798.

[18] Delgado J. and Ruzhansky M., “Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds”, C. R. Acad. Sci. Paris. Ser. I. 352 (2014), No. 10, 779–784.

[19] Delgado J. and Ruzhansky M., “Fourier multipliers, symbols and nuclearity on compact manifolds”, J. Anal. Math. 135 (2018), No. 2, 757–800.

[20] Delgado J. and Ruzhansky M., “The bounded approximation property of variable Lebesgue spaces and nuclearity”, Math. Scand. 122 (2018), No.2, 299–319.

[21] Delgado J. and Ruzhansky M., “Schatten classes and traces on compact groups”, Math. Res. Lett. 24 (2017), No. 4, 979–1003.

[22] Delgado J., RuzhanskyM. andWang B., “Approximation property and nuclearity on mixed-norm Lp, modulation and Wiener amalgam spaces”, J. Lond. Math. Soc. 94 (2016), No. 2, 391–408.

[23] Delgado J., Ruzhansky M. and Wang B., “Grothendieck-Lidskii trace formula for mixed- norm and variable Lebesgue spaces”, J. Spectr. Theory 6 (2016), No. 4, 781–791.

[24] Delgado J., Ruzhansky M. and Tokmagambetov N., “Schatten classes, nuclearity and non-harmonic analysis on compact manifolds with boundary”, J. Math. Pures Appl. (9) 107 (2017), No. 6, 758–783.

[25] Duistermaat J.J. and Hörmander L., “Fourier integral operators. II”, Acta Math. 128 (1972), No. 3–4, 183–269.

[26] Eskin G. I., “Degenerate elliptic pseudodifferential equations of principal type”, Mat. Sb.(N.S.), 82(124) (1970), 585–628.

[27] Fegan H., Introduction to compact Lie groups. Series in Pure Mathematics, 13. World Scientific Publishing Co., Inc., River Edge, NJ, 1991.

[28] Fujiwara A., “construction of the fundamental solution for the Schrödinger equations”, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), No. 1, 10–14.

[29] Ghaemi M.B., Jamalpour Birgani M. and Wong M.W., “Characterizations of nuclear pseudo-differential operators on S1 with applications to adjoints and products”, J. Pseudo-Differ. Oper. Appl. 8 (2017), No. 2, 191–201.

[30] Ghaemi M.B., Jamalpour Birgani M. and Wong M.W., “Characterization, adjoints and products of nuclear pseudo-differential operators on compact and Hausdorff groups”, U.P.B. Sci. Bull., Series A 79 (2017), No. 4, 207–220.

[31] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16, Providence, 1955.

[32] Hörmander L., “Fourier integral operators I”, Acta Math. 127 (1971), No. 1–2, 79–183.

[33] Hörmander L., “Pseudo-differential Operators and Hypo-elliptic equations”, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138–183.

[34] Hörmander L., The Analysis of the linear partial differential operators, III, Springer-Verlag, Berlin, 1985.

[35] Kumano-go H., “A calculus of Fourier integral operators on Rn and the fundamental solution for an operator of hyperbolic type”, Comm. Partial Differential Equations 1 (1976), No. 1, 1–44.

[36] Jamalpour Birgani M., “Characterizations of Nuclear Pseudo-differential Operators on Z with some Applications”, Math. Model. of Nat. Phenom. 13 (2018), No. 4, 13–30.

[37] Miyachi A., “On some estimates for the wave equation in Lp and Hp”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), No. 2, 331–354.

[38] Molahajloo S., “Pseudo-differential Operators on Z”, in textitPseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory:Advances and Applications vol. 205 (eds. Schulze B.W. and Wong M.W.), Birkhäuser Basel (2009),213–221.

[39] Peral J.C., “Lp-estimates for the wave equation”, J. Funct. Anal. 36 (1980), No. 1, 114–145.

[40] Pietsch A., Operator ideals, Mathematische Monographien, 16. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

[41] Pietsch A., History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007.

[42] Reinov O.I. and Latif Q., “Grothendieck-Lidskii theorem for subspaces of Lp-spaces”, Math. Nachr. 286 (2013), No. 2–3, 279–282.

[43] Nicola F. and Rodino L., “Dixmier traceability for general pseudo-differential operators”, in C∗-algebras and elliptic theory II, Trends Math. (eds. Burghelea D., Melrose R., Mishchenko A. and Troitsky E.), Birkhäuser Basel (2008), 227–237.

[44] Ruzhansky M. and Sugimoto M., “Global L2-boundedness theorems for a class of Fourier integral operators”, Comm. Partial Differential Equations 31 (2006), No. 4, 547–569.

[45] Ruzhansky M. and Sugimoto M., “A smoothing property of Schrödinger equations in the critical case”, Math. Ann. 335 (2006), No. 3, 645–673.

[46] Ruzhansky M. and Sugimoto M., “Weighted Sobolev L2 estimates for a class of Fourier integral operators”, Math. Nachr. 284 (2011), No. 13, 1715–1738.

[47] Ruzhansky M. and Sugimoto M., “Global regularity properties for a class of Fourier integral operators”, arxiv: 1510.03807v1.

[48] Ruzhansky M. and Turunen V., Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhaüser-Verlag, Basel, 2010.

[49] Ruzhansky M. and Wirth J., Dispersive type estimates for Fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, (Special), 1263–1270. doi:10.3934/proc.2011.2011.1263

[50] Ruzhansky M., Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations, volume 131 of CWI Tract. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2001.

[51] Seeger A., Sogge C.D. and Stein E.M., “Regularity properties of Fourier integral operators”, Ann. of Math. 134 (1991), No. 2, 231–251.

[52] Tao T., “The weak-type (1, 1) of Fourier integral operators of order −(n − 1)/2”, J. Aust. Math. Soc. 76 (2004), No. 1, 1–21.