Plasmaféresis como opción terapéutica en infección por COVID-19

Resumen

Introducción: La COVID-19, es una neumonía ocasionada por el nuevo coronavirus SARS-CoV-2, que se puede presentar con cuadros severos, distrés respiratorio agudo (SDRA), disfunción orgánica múltiple y muerte; como consecuencia de una respuesta inflamatoria alterada denominada “tormenta de citoquinas”. La plasmaféresis se propone como una estrategia de tratamiento prometedora para el manejo de este tipo de complicaciones. Objetivo: nuestro objetivo principal es mostrar toda la bibliografía disponible, referente a la utilidad de la plasmaféresis en el manejo de la tormenta de citoquinas en pacientes con COVID-19 grave; evaluar su posible beneficio y proponer realizar nuevos ensayos clínicos que avalen el uso rutinario de esta terapia. Metodología: se realizó una búsqueda avanzada con los términos DeSC “Infecciones por Coronavirus; SARS-CoV; Plasmaféresis; Recambio plasmático; Disfunción orgánica múltiple; Sepsis; Síndrome de respuesta inflamatoria sistémica; Lesión renal aguda”. A través de los motores de búsqueda Clinical Key, Embase, PubMed y Ovid, obteniendo un total de 156 resultados, entre artículos originales, reportes de casos, series de casos y revisiones de la literatura, se seleccionaron un total de 54 artículos que fueron utilizados para la elaboración de la presente revisión de la literatura. Conclusiones: la terapia de recambio plasmático se podría utilizar como tratamiento complementario, con el objetivo de reducir carga inflamatoria y viral, reduciendo así el daño de órgano blanco. Sin embargo, hace falta la realización de ensayos clínicos controlados y con buenos diseños metodológicos, que nos ayuden a demostrar la efectividad de este tipo de terapias en pacientes con COVID-19 grave.

Palabras clave: Infecciones por Coronavirus, SARS-CoV, Plasmaféresis, Recambio plasmático, Disfunción orgánica múltiple, Sepsis, Síndrome de respuesta inflamatoria sistémica, Lesión renal aguda

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708-1720. doi: 10.1056/NEJMoa2002032
2. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. N Engl J Med. 2003; 348(20):1953-1966. doi: 10.1056/NEJMoa030781
3. World Health Organization. Coronavirus disease (COVID-19) outbreak (https://www .who .int). Situation report. 20 de febrero de 2020.
4. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report –51. 11 de marzo de 2020;
5. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report –161. 29 de junio de 2020;
6. Ministerio de Salud y Protección social, Instituto nacional de salud. Situación actual de nuevo Coronarivus (COVID-19). 29 de junio de 2020; https://d2jsqrio60m94k.cloudfront.net.
7. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-574. doi: 10.1016/S0140-6736(20)30251-8
8. Cong Y, Verlhac P, Reggiori F. The Interaction between Nidovirales and Autophagy Components. Viruses. 2017; 9(7):182. doi: 10.3390/v9070182
9. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 2020.
10. Cui J, Li F, Zheng-Li S. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(3): 181-192. doi: 10.1038/s41579-018-0118-9
11. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382(16): 1564-1567. doi: 10.1056/NEJMc2004973
12. Cao Z, Li T, Liang L, Wang H, Wei F, Meng S, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. Feng Y-M, editor. PLOS ONE. 2020; 15(6): e0234764. doi: 10.1371/journal.pone.0234764
13. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of gastrointestinal symptoms in patients with COVID-19. Gastroenterology. 2020; 158(8): 2294-2297. doi: 10.1053/j.gastro.2020.03.020
14. Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol. 2020; 58(6): e00512-00520. doi: 10.1128/JCM.00512-20.

15. Loeffelholz MJ, Tang Y-W. Laboratory diagnosis of emerging human coronavirus infections – the state of the art. Emerg Microbes Infect. 2020; 9(1): 747-756. doi: 10.1080/22221751.2020.1745095
16. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020; 323(18): 1843-1844. doi: 10.1001/jama.2020.3786
17. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis campaign: guidelines on the management of critically ill adults with Coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020; 46(5): 854-887. doi: 10.1007/s00134-020-06022-5.
18. Maestros PS. Coronaviridae. Fields Virology Lippincott Williams y Wilkins, Philadelphia, PA. 2013; 825-858.
19. Pastrian-Soto G. Bases genéticas y moleculares del COVID-19 (SARS-CoV-2). mecanismos de patogénesis y de respuesta inmune. Int J Odontostomatol. 2020; 14(3): 331-337. doi: http://dx.doi.org/10.4067/S0718-381X2020000300331
20. Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020; 38(2): 337-342.
21. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2): 102-108. doi: 10.1016/j.jpha.2020.03.001
22. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020; 39(7): 2085-2094. doi: 10.1007/s10067-020-05190-5
23. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7): 1-11. doi: 10.1001/jamainternmed.2020.0994
24. Yuen KY, Wong SSY. Human infection by avian influenza A H5N1. Hong Kong Med J. 2005;11(3): 189-199.
25. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39(5): 529-539. doi: 10.1007/s00281-017-0629-x.
26. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020; 214: 108393. doi: 10.1016/j.clim.2020.108393
27. Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID ‐19. Am J Hematol. 2020; 95(7): 834-847.
28. Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. 2020; doi: http://medrxiv.org/lookup/doi/10.1101/2020.03.12.20035048
29. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-1034. doi: 10.1016/S0140-6736(20)30628-0
30. Lucherini OM, Rigante D, Sota J, Fabiani C, Obici L, Cattalini M, et al. Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol. 2018; 36 Suppl 110(1): 3-9.
31. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The Immunology of macrophage activation syndrome. Front Immunol. 2019; 10:119. doi: 10.3389/fimmu.2019.00119
32. Daza Arnedo, R,Aroca Martínez, G,Rico Fontalvo, JE, Rey Vela E, Pájaro Galvis N, Salgado Montiel LG, et al. Terapias de purificación sanguínea en COVID-19. Rev Colomb Nefrol. 2020; 7(Supl 2).
33. Joyner M, Wright RS, Fairweather D, Senefeld J, Bruno K, Klassen S, et al. Early Safety indicators of COVID-19 convalescent plasma in 5,000 patients. medRxiv. 2020; preprint. doi: http://medrxiv.org/lookup/doi/10.1101/2020.05.12.20099879
34. Patel P, Nandwani V, Vanchiere J, Conrad SA, Scott LK. Use of therapeutic plasma exchange as a rescue therapy in 2009 pH1N1 influenza A—An associated respiratory failure and hemodynamic shock: Pediatr Crit Care Med. 2011; 12(2): e87-e89. doi: 10.1097/PCC.0b013e3181e2a569
35. Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002; 28(10): 1434-1439. doi: 10.1007/s00134-002-1410-7
36. Knaup H, Stahl K, Schmidt BMW, Idowu TO, Busch M, Wiesner O, et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care. 2018; 22(1): 285. doi: 10.1186/s13054-018-2220-9
37. Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020; 24(1): 128. doi: 10.1186/s13054-020-2836-4
38. Keith P, Day M, Choe C, Perkins L, Moyer L, Hays E, et al. The successful use of therapeutic plasma exchange for severe COVID-19 acute respiratory distress syndrome with multiple organ failure. SAGE Open Med Case Rep. 2020; 8: 2050313X2093347. doi: 10.1177/2050313X20933473
39. Shi H, Zhou C, He P, Huang S, Duan Y, Wang X, et al. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents. 2020; 105974. doi: 10.1016/j.ijantimicag.2020.105974
40. Zhang L, Zhai H, Ma S, Chen J, Gao Y. Efficacy of therapeutic plasma exchange in severe COVID‐19 patients. Br J Haematol. 2020. doi: https://doi.org/10.1111/bjh.16890
41. Dogan L, Kaya D, Sarikaya T, Zengin R, Dincer A, Akinci IO, et al. Plasmapheresis treatment in COVID-19–related autoimmune meningoencephalitis: case series. Brain Behav Immun. 2020; 87: 155-158. doi: 10.1016/j.bbi.2020.05.022
42. Khamis F, Al-Zakwani I, Al Hashmi S, Al Dowaiki S, Al Bahrani M, Pandak N, et al. Therapeutic plasma exchange in adults with severe COVID-19 Infection. Int J Infect Dis. 2020; S1201971220304999. doi: https://doi.org/10.1016/j.ijid.2020.06.064
43. Ronco C, Reis T, De Rosa S. Coronavirus epidemic and extracorporeal therapies in intensive care: si vis pacem para bellum. Blood Purif. 2020; 49(3): 255-258. doi: 10.1159/000507039
44. Ronco C, Bellomo R, Kellum JA, Ricci Z. Critical care nephrology. Elsevier. Canada. 2019.
45. Padmanabhan A, Connelly‐Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, et al. Guidelines on the Use of therapeutic apheresis in clinical practice – evidence‐based approach from the writing committee of the American Society for Apheresis: The eighth special issue. J Clin Apheresis. 2019; 34(3): 171-354. doi: 10.1002/jca.21705
46. Connelly-Smith L, Dunbar NM. The 2019 guidelines from the American Society for Apheresis: whatʼs new? Curr Opin Hematol. 2019; 26(6): 461-465. doi: 10.1097/MOH.0000000000000534
47. Ishikawa T, Abe S, Kojima Y, Sano T, Iwanaga A, Seki K-I, et al. Prediction of a sustained viral response in chronic hepatitis C patients who undergo induction therapy with double filtration plasmapheresis plus interferon-β/ribavirin. Exp Ther Med. 2015; 9(5): 1646-1650. doi: 10.3892/etm.2015.2340
48. Zhang Y, Yu L, Tang L, Zhu M, Jin Y, Wang Z, et al. A promising anti-cytokine-storm targeted therapy for COVID-19: The artificial-liver blood-purification system. Engineering. 2020; S209580992030062X. doi: 10.1016/j.eng.2020.03.006
49. Liu X, Zhang Y, Xu X, Du W, Su K, Zhu C, et al. Evaluation of plasma exchange and continuous veno-venous hemofiltration for the treatment of severe avian influenza A (H7N9): a cohort study: blood purification in severe avian influenza A (H7N9). Ther Apher Dial. 2015; 19(2): 178-184. doi: 10.1111/1744-9987.12240
50. U.S. Authority, food and drug agency (FDA) for TORAYMYXIN® to treat COVID-19 patients in a clinical study in the U.S. Regarding an approval for the interim order of“TORAYMYXIN®” to treat COVID-19 patients in Canada.
51. Adeli SH, Asghari A, Tabarraii R, Shajari R, Afshari S, Kalhor N, et al. Using therapeutic plasma exchange as a rescue therapy in CoVID-19 patients: a case series. Pol Arch Intern Med. 2020; 130(5): 455-458. doi: 10.20452/pamw.15340
52. Kawashima H, Togashi T, Yamanaka G, Nakajima M, Nagai M, Aritaki K, et al. Efficacy of plasma exchange and methylprednisolone pulse therapy on influenza-associated encephalopathy. J Infect. 2005; 51(2): E53-56. doi: 10.1016/j.jinf.2004.08.017
53. González C, Yama E, Yomayusa M, VargasJ, Rico J, Ariza A, et al. Consenso colombiano de expertos sobre recomendaciones informadas en la evidencia para la prevención, diagnóstico y manejo de la lesión renal aguda por SARS-CoV-2/COVID-19. Rev Colomb Nefrol. 2020; 7(Supl 2). doi: https://doi.org/10.22265/acnef.7.Suplemento.473
54. Chinese Medical Association. Expert consensus on the Application of Special Blood purification Technology in severe COVID-19 pneumonia.
Publicado
2020-07-17
Sección
Artículo de Revisión