Ley exponencial de la dinámica cardiaca caótica aplicada a 18 horas
pdf
HTML
XML

Cómo citar

Rodríguez-Velásquez, J. O., Gilraldo-Cardona, J. F., Barrios-Arroyave, F. A., Prieto-Bohórquez, S. E., Correa-Herrera, S. C., & Soracipa-Muñoz, M. Y. (2019). Ley exponencial de la dinámica cardiaca caótica aplicada a 18 horas. Salud UIS, 51(2), 148–155. https://doi.org/10.18273/revsal.v51n2-2019007

Resumen

 

 Introducción: La aplicación de una ley exponencial para los sistemas dinámicos caóticos cardiacos ha sido reducida a 18 horas para el análisis del Holter, cuantificando las dinámicas cardiacas normales y patológicas, así como la evolución entre estos estados. Metodología: Se analizaron 80 registros electrocardiográficos, 15 con dinámicas normales y 65 con diferentes patologías. Se construyó un atractor caótico para cada dinámica cardiaca a partir de la simulación de la secuencia de las frecuencias cardiacas durante 18 horas, posteriormente se halló la dimensión fractal de cada atractor y su ocupación espacial. Los parámetros diferenciadores de la ley caótica exponencial fueron aplicados diferenciando dinámicas cardiacas normales de aquellas patológicas, finalmente se calculó la sensibilidad, especificidad y coeficiente Kappa. Resultados: Las dinámicas normales presentaron espacios de ocupación por encima de 200 en la rejillla Kp, y para la rejilla Kg por encima de 67. Para los casos de enfermedad aguda los valores en las rejillas Kp y Kg estuvieron por debajo de 73 y 22 respectivamente. Los valores de sensibilidad y especificidad fueron de 100% y el coeficiente Kappa fue de 1. Conclusión: La aplicación de la ley exponencial durante 18 horas mostro que fue posible caracterizar matemáticamente las dinámicas cardiacas, permitiendo reducir el tiempo de evaluación. 

https://doi.org/10.18273/revsal.v51n2-2019007
pdf
HTML
XML

Referencias

1. Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Mass. Addison-Wesley 1992. doi: 10.1063/1.4823195.

2. Peitgen H, Jürgens H, Saupe D. Strange attractors, the locus of chaos. En: Chaos and Fractals: New Frontiers of Science. Springer-Verlag. NY. 1992; pp. 655-768. doi: 10.1007/b97624.

3. Calabrese JL. Ampliando las fronteras del reduccionismo. Deducción y sistemas no lineales. Psicoanálisis ApdeBA. 1999; 21(3): 431-453.

4. Mandelbrot B. Cambios de escala y leyes potenciales sin geometría. En: The fractal geometry of nature. Freeman Ed. San Francisco, 1972: pp. 477-487. doi:
10.1119/1.13295.

5. Mandelbrot B. Árboles jerárquicos o de clasificación, y la dimensión. En: Los Objetos Fractales. Tusquets Eds S.A. Barcelona. 2000; 161-166.

6. Mandelbrot B. How Long Is the Coast of Britain? statistical self-similarity and fractional dimension. Science. 1967; 156: 636-638. doi: 10.1126/science.156.3775.636.

7. Peitgen H, Jürgens H, Saupe D. The Box-Counting Dimension En: Chaos and Chaos and Fractals: New Frontiers of Science. Springer-Verlag. N.Y. 1992. doi: 10.1007/b97624
8. World Health Organization. Noncommunicable diseases. World Health Organization; 2018.

9. Mozaffarian D, Benjamin E, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics-2015 Update. A report from the American heart association. Circulation. 2015; 131: e29-e322. doi: 10.1161/CIR.0000000000000152.

10. Steinberg JS, Varma N, Cygankiewicz I, Aziz P, Balsam P, Baranchuk A, et al. 2017 ISHNEHRS expert consensus statement on ambulatory ECG and external cardiacmonitoring/telemetry. Heart Rhythm. 2017; 14: e55-e96. doi: 10.1016/j.hrthm.2017.03.038.

11. Barron H, Viskin S. Autonomic markers and prediction of cardiac death after myocardial infarction. Lancet. 1998; 351: 461-462. doi: 10.1016/S0140-6736(05)78676-1.

12. Hilldebrand S, Gast KB, de Mutsert R, Swenne CA, Jukema JW, Middeldorp, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose–response meta-regression. EP Europace. 2013; 15(5): 742-749. DOI: 10.1093/europace/eus341.

13. Lui G, Wang L, Wang Q, Zhou G, Wang Y, Jiang Q. A New approach to detect congestive heart failure using short-term heart rate variability measures. PLoS One. 2014; 9(4): e93399. doi: 10.1371/journal.pone.0093399.

14. Wolf M, Varigos G, Hunt D, Sluman J. Sinus arrhythmia in acute myocardial infarction. Med J Aus. 1978; 2: 52-53. doi: 10.5694/j.1326-5377.1925.tb11693.x.

15. Goldberger A, Amaral L, Hausdorff JM, Ivanov P, Peng Ch, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. PNAS. 2002; 99: 2466-2472. doi: 10.1073/pnas.012579499.

16. Higgins JP. Nonlinear systems in medicine. Yale J Biol Med. 2002; 75: 247-260.

17. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic Time Series. Phys Rev Lett. 2002; 89(6): 0681021-0681024. doi: 10.1103/PhysRevLett.89.068102.

18. Wu GQ, Arzeno NM, Shen LL, Tang DK, ZhengDA, Zhao NQ, et al. Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure. PLoS ONE. 2009; e4323. doi: 10.1371/journal.pone.0004323.

19. Braun C, Kowallik P, Freking A, Hadeler D, Kniffki K, Meesmann M. Demonstration of nonlinear components in heart rate variability of healthy persons. Am J Physiol. 1998; 275: H1577-H1584. doi: 10.1152/ajpheart.1998.275.5.H1577.

20. Rodríguez J. Mathematical law of chaotic cardiac dynamic: Predictions of clinic application. J Med Med Sci. 2011; 2(8): 1050-1059.

21. Huikuri HV, Mäkikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infartion. Circulation. 2000; 101: 47-53. doi: 10.1161/01.CIR.101.1.47.

22. Barwad A, Dey P. Multifractal spectrum differentiation of well-differentiated adenocarcinoma from complex atypical hyperplasia of the uterus. Anal Quant Cytol Histol. 2012; 34(2):
105-108.

23. Moreno PA, Vélez PE, Martínez E, Garreta LE, Díaz N, Amador S, et al. The human genome: a multifractal analysis. BMC Genomics. 2011; 12: 506. doi: 10.1186/1471-2164-12-506.

24. Bikou O, Delides A, Drougou A, Nonni A, Patsouris E, Pavlakis K. Fractal dimension as a diagnostic tool of complex endometrial hyperplasia and welldifferentiated endometrioid carcinoma. In Vivo. 2016; 30(5): 681-690.

25. Zatloukal Z. Granulometry and fractal dimensions. Ceska Slov Farm. 2003; 52(5): 244-247.

26. Saidov T, Heneweer C, Kuenen M, von Broich, Wijkstra H, Rosette J, et al. Fractal dimension of tumor microvasculature by DCE-US: preliminary study in mice. Ultrasound Med
Biol. 2016; 42(12): 2852-2863. doi: 10.1016/j.ultrasmedbio.2016.08.001.

27. Verma G, Luciani ML, Palombo A, Metaxa L, Panzironi G, Pediconi F, et al. Microcalcification morphological descriptors and parenchyma fractal dimension hierarchically interact in breast cancer: a diagnostic perspective. Comput Biol Med. 2018; 93: 16. doi: 10.1016/j.compbiomed.2017.12.004.

28. Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010; 10:1-6. doi: 10.1186/1756-6649-10-1.

29. Rodríguez J, Prieto S, Correa C, Posso H, Bernal P, Puerta G, et al. Generalización fractal de células preneoplásicas y cancerígenas del epitelio escamoso cervical. Una Nueva metodología de aplicación clínica. Rev Fac Med. 2010; 18(2):173-181.

30. Rodríguez J, Correa C, Melo M, Domínguez D, Prieto S, Cardona DM, et al. Chaotic cardiac law: Developing predictions of clinical application. J Med Med Sci. 2013;4(2): 79-84.

31. Rodríguez J, Narváez R, Prieto S, Correa C, Bernal P, Aguirre G, Soracipa Y, Mora J. The mathematical law of chaotic dynamics applied to cardiac arrhythmias. J. Med. Med. Sci. 2013; 4(7): 291-300.

32. Gao J, Hu J, Liu F, Cao Y. Multiscale entropy analysis of biological signals: a fundamental biscaling law. Front. Comput. Neurosci. 2015; 9:64. doi: 10.3389/fncom.2015.00064.

33. Nogueira ML, Garner DM, Osório E, de Abreu LC, Valenti VE. Globally chaotic analysis of Heart Rate Variability during acute auditory stimulus by heavy metal music. Medical Express. 2015;2(5): 1-7. doi: 10.5935/MedicalExpress.2015.05.04.

34. Krogh T, Christini DJ. Nonlinear dynamics in cardiology. Annu Rev Biomed Eng. 2012; 14: 179-203. doi: 10.1146/annurev-bioeng-071811-150106.

35. Huikuri HV, Mäkikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infartion. Circulation. 2000; 101: 47-53.

36. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A. et al. Entropy, entropy rate and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed Eng. 2001; 48: 1282-1291.

37. Guzzetti S, Borroni E, Garbelli PE, Ceriani E, Della P, Montano N, et al. Symbolic dynamics of heart rate variability: a probe to investigate cardiac autonomic
modulation. Circulation. 2005; 112: 465-470. doi: 10.1161/CIRCULATIONAHA.104.518449.

38. Maestri R, Pinna GD, Accardo A, Allegrini P, Balocchi R, D’Addio G, et al. Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol. 2017; 18: 425-433. doi: 10.1111/j.1540-8167.2007.00728.x.

39. Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009; 367: 277-96. doi: 10.1098/rsta.2008.0232.

40. Perkiömäki J, Mäkikallio TH, Huikuri HV. Fractal and complexity measures of Heart Rate Variability. Clin Exp Hypertens. 2005; 2:149-158. doi: 10.1081/CEH-48742.

41. Rodríguez J, Correa C, Prieto S, Valencia LE, Barrios FA. Evaluación de la dinámica cardiaca a partir de la ley caótica exponencial: reducción a 16 horas. Arch Medicina. 2017; 13(2):3. doi: 10.3823/1343.

42. Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública 2010; 27(3): 211-218.

43. Rodríguez J, Prieto S, Correa C, Melo M, Dominguez D, Olarte N, et al. Prediction of CD4+ Cells counts in HIV/AIDS Patients based on sets and probability theories. Current HIV Research. 2018;16(6). doi: 10.2174/1570162X17666190306125819.

44. Rodríguez J. Teoría de unión al HLA clase II teorías de Probabilidad Combinatoria y Entropía aplicadas a secuencias peptídicas. Inmunología 2008; 27(4): 151-66. doi: 10.1016/S0213-9626(08)70064-7.

45. Rodríguez J. Entropía proporcional de los sistemas dinámicos cardiacos: predicciones físicas y matemáticas de la dinámica cardiaca de aplicación clínica. Rev Colomb Cardiol 2010; 17: 115-129. doi: 10.1016/S0120-5633(10)70229-1.

46. Rodríguez J. Dynamical systems applied to dynamic variables of patients from the intensive care unit (ICU): Physical and mathematical mortality predictions on ICU. J Med Med Sci. 2015; 6(8): 209-220.
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.