Abstract
Introduction: Gingival hypertrophy (GH) is the increase in the volume of the gingiva associated with certain
systemic, hereditary (idiopathic) diseases, the intake of some medications or local factors such as orthodontic
treatment, capable of causing histological changes in the gingival connective tissue. Objective: To describe the histological characteristics and identify type I and type III collagen in gingival tissues of subjects with gingival hypertrophy wearing orthodontics. Method: A case-control study was designed that included the analysis of gingival tissue biopsies from 12 patients submitted to periodontal surgeries. The sample was divided into two groups: healthy individuals (Control; n= 6) and patients with GH wearing orthodontics (Patients; n= 6). The samples were processed and embedded in paraffin. Masson-goldner and sirius red/fast green stains were used. Type I and type III collagen were identified by immunohistochemistry with monoclonal antibodies. Result: A hyperplastic epithelium and dense connective tissue with abundant randomly distributed collagen fibers were observed in patients with orthodontic GH. Immunodetention of type I collagen indicated the presence of abundant disorganized fibers and type III collagen was inmunolocalized underlying the basement membrane, blood vessels and the entire extension of the connective tissue of patients with GH orthodontic. Conclusion: The accumulation of collagen fibers, particularly type I and type III collagen, are histological findings that characterize GH in orthodontic wearers. Future studies are necessary to elucidate the phenotype of gingival fibroblasts and the probable homeostatic loss between collagen production and degradation in this pathology.
References
Pascu EI, Pisoschi CG, Andrei AM, Munteanu MC, Rauten AM, Scrieciu M, et al. Heterogeneity of collagen secreting cells in gingival fibrosis--an immunohistochemical assessment and a review of the literature. Rom J Morphol Embryol. 2015; 56(1): 49-61.
Ramírez-Rámiz A, Brunet-LLobet L, Lahor-Soler E, Miranda-Rius J. On the cellular and molecular mechanisms of drug-induced gingival overgrowth. Open Dent J. 2017; 11: 420-435. doi: http://dx.doi.org/10.2174/1874210601711010420
Drăghici EC, CrăiŢoiu Ş, MercuŢ V, Scrieciu M, Popescu SM, Diaconu OA, et al. Local cause of gingival overgrowth. Clinical and histological study. Rom J Morphol Embryol. 2016; 57(2): 427-435.
Sharma S, Shahi AK, Prajapati VK, Singh B. Idiopathic gingival fibromatosis with massive gingival overgrowth: A rare case report. J Indian Soc Periodontol. 2020; 24(4): 379-382. doi: https://doi.org/10.4103/jisp.jisp_426_19
Watson E, Wood RE, Maxymiw WG, Schimmer AD. Prevalence of oral lesions in and dental needs of patients with newly diagnosed acute leukemia. J Am Dent Assoc. 2018; 149(6): 470-480. doi: https://doi.org/10.1016/j.adaj.2018.01.019
Simancas-Escorcia V, Berdal A, Díaz-Caballero A. Caracterización fenotípica del síndrome amelogénesis imperfecta-nefrocalcinosis: una revisión. Duazary. 2019; 16(1): 129. doi: http://dx.doi.org/10.21676/2389783X.2531
Chatzopoulos GS, Koidou VP, Wolff LF. Systematic review of cyclosporin A-induced gingival overgrowth and genetic predisposition. Quintessence Int. 2017; 48(9): 711-724. doi: http://dx.doi.org/10.3290/j.qi.a38120
González-Jaranay M, Téllez L, Roa-López A, Gómez-Moreno G, Moreu G. Periodontal status during pregnancy and postpartum. PLoS ONE. 2017; 12(5): e0178234. doi: http://dx.doi.org/10.1371/journal.pone.0178234
Gorbunkova A, Pagni G, Brizhak A, Farronato G, Rasperini G. Impact of orthodontic treatment on periodontal tissues: A narrative review of multidisciplinary literature. Int J Dent. 2016; 2016:4723589. doi: https://doi.org/10.1155/2016/4723589
Rodríguez Vásquez AG, Fernández García LK, Valladares Trochez EH. Prevalencia de agrandamiento y retracción gingival en pacientes con tratamiento de ortodoncia. Port Ciencia. 2018; 16; 21-31. doi: https://doi.org/10.5377/pc.v13i0.5918
Pinto AS, Alves LS, Zenkner JE do A, Zanatta FB, Maltz M. Gingival enlargement in orthodontic patients: Effect of treatment duration. Am J Orthod Dentofacial Orthop. 2017; 152(4): 477-482. doi: https://doi.org/10.1016/j.ajodo.2016.10.042
Kantarci A, Augustin P, Firatli E, Sheff MC, Hasturk H, Graves DT, et al. Apoptosis in Gingival Overgrowth Tissues. J Dent Res. 2007; 86(9): 888-892. doi: https://doi.org/10.1177/154405910708600916
Meng L, Huang M, Ye X, Fan M, Bian Z. Increased expression of collagen prolyl 4-hydroxylases in Chinese patients with hereditary gingival fibromatosis. Arch Oral Biol. 2007; 52(12): 1209-1214. doi: https://doi.org/10.1016/j.archoralbio.2007.07.006
Jadhav T, Bhat KM, Bhat GS, Varghese JM. Chronic inflammatory gingival enlargement associated with orthodontic therapy--a case report. J Dent Hyg. 2013; 87(1): 19-23.
Gong Y, Lu J, Ding X. Clinical, microbiologic, and immunologic factors of orthodontic treatmentinduced gingival enlargement. Am J Orthod Dentofacial Orthop. 2011; 140(1): 58-64. doi: https://doi.org/10.1016/j.ajodo.2010.02.033
Zachrisson S, Zachrisson BU. Gingival condition associated with orthodontic treatment. Angle Orthod. 1972; 42(1): 26-34. doi: https://doi.org/10.1043/0003-3219(1972)042<0026:GCAWOT>2.0.CO;2
Şurlin P, Rauten AM, Pirici D, Oprea B, Mogoantă L, Camen A. Collagen IV and MMP-9 expression in hypertrophic gingiva during orthodontic treatment. Rom J Morphol Embryol. 2012; 53(1): 161-165.
Gursoy UK, Sokucu O, Uitto V-J, Aydin A, Demirer S, Toker H, et al. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatmentinduced gingival overgrowth. Eur J Orthod. 2007; 29(6): 555-558. doi: https://doi.org/10.1093/ejo/cjm074
Kapadia JM, Agarwal AR, Mishra S, Joneja P, Yusuf AS, Choudhary DS. Cytotoxic and genotoxic effect on the buccal mucosa cells of patients undergoing fixed orthodontic treatment. J Contemp Dent Pract. 2018; 19(11): 1358-1362.
Hosadurga R, Nabeel Althaf M, Hegde S, Rajesh K, Arun Kumar M. Influence of sex hormone levels on gingival enlargement in adolescent patients undergoing fixed orthodontic therapy: A pilot study. Contemp Clin Dent. 2016; 7(4): 506. doi: https://doi.org/10.4103/0976-237X.194099
Gawron K, Ochała-Kłos A, Nowakowska Z, Bereta G, Łazarz-Bartyzel K, Grabiec AM, et al. TIMP-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis. 2018; 24(8): 1581-1590. doi: https://doi.org/10.1111/odi.12938
Dannewitz B, Tomakidi P, Syagailo Y, Kohl A, Staehle HJ, Eickholz P, et al. Elevation of collagen type I in fibroblast-keratinocyte cocultures emphasizes the decisive role of fibroblasts in the manifestation of the phenotype of cyclosporin A-induced gingival overgrowth. J Periodont Res. 2009; 44(1): 62-72. doi: https://doi.org/10.1111/j.1600-0765.2007.01066.x
Chen JT, Wang CY, Chen MH. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts. J Formos Med Assoc. 2018; 117(12): 1115-1123. doi: https://doi.org/10.1016/j.jfma.2017.12.014
Martelli-Junior H, Cotrim P, Graner E, Sauk JJ, Coletta RD. Effect of transforming growth factorbeta1, interleukin-6, and interferon-gamma on the expression of type I collagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis. J Periodontol. 2003; 74(3): 296-306. doi: https://doi.org/10.1902/jop.2003.74.3.296
Kang CM, Lee JH, Jeon M, Song JS, Kim SO. The Effect of MMP-13, MMP-12, and AMBN on gingival enlargement and root deformation in a new type of gingival fibromatosis. J Clin Pediatr Dent. 2018; 42(1): 50-54. doi: https://doi.org/10.17796/1053-4628-42.1.9
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Victor Hugo Simancas Escorcia, Ariana Lozada-Martínez, Antonio Díaz-Caballero