Effects of oleic (18 : 1n-9) and palmitic (16 : 0) fatty acids on the metabolic state of adipocytes
pdf
HTML (Español (España))
EPUB (Español (España))

Keywords

Adipocyte
Fatty acids
Oleic acid
Palmitic acid
Insulin resistance
Insulin
Lipolysis
Lipogenesis

How to Cite

Moreno–Castellanos, N. R., Angel–Martin, A., & Mantilla–Mora, G. (2021). Effects of oleic (18 : 1n-9) and palmitic (16 : 0) fatty acids on the metabolic state of adipocytes. Salud UIS, 53. https://doi.org/10.18273/saluduis.53.e:21009

Abstract

Background: Elevated serum-free fatty acid (FFA) levels induce insulin resistance (IR) or a protective mechanism to IR development in humans; it depends on FFA type. This study explores the effects of oleic (OLA – unsatured) and palmitic (PAM-saturated) fatty acids on insulin action in mature adipocytes effect. Methods: Cells were incubated 18 h with or without OLA and PAM at 250 μM, and 500 μM. After the culture period, were measured: adipocyte viability, size, fatty acids mobilisation, insulin signalling proteins, and glucose uptake. Results: Adipocytes exhibited optimal viability tolerances regardless of the kinds of fatty acids used for treatment. However, adipocytes were hypertrophic after OLA and PAM stimuli. Additionally, lipogenesis (lipid synthesis), and lipolysis (lipid breakdown) were significantly increased by treatment with OLA, or PAM (500 μM) compared to control. Moreover, OLA results showed that there was no significant reduction in signalling cascades, except for a downstream proinflammatory response. Instead, PAM hypertrophic adipocytes were insulin resistant with alteration of proinflammatory and stress markers. Conclusions: Current findings suggest that PAM induces insulin resistance, mitochondrial and reticulum stress on fat cells compared to those treated with OLA that, protects adipocytes to all those alterations.

https://doi.org/10.18273/saluduis.53.e:21009
pdf
HTML (Español (España))
EPUB (Español (España))

References

Daryabor G, Dieter K, Kurosh K. An Update on immune dysregulation in obesity-related insulin resistance. Scand J Immunol. 2019; 89(4): e12747. doi: 10.1111/sji.12747

Li Y, Quantao M, Pengfei L, Jingkang W, Min Wang Y, Fan Tieshan W, et al. Proteomics Reveals Different Pathological Processes of Adipose Tissue, Liver, and Skeletal Muscle under Insulin Resistance. J Cellular Physiol. 2020; 235(10): 1-21. doi: https://doi.org/10.1002/jcp.29658

Blüher M. Metabolically healthy obesity. Endocrine Reviews. 2020; 41(3): 405-420. doi: https://doi.org/10.1210/endrev/bnaa004

Schulze MB. Metabolic health in normal-weight and obese individuals. Diabetologia. 2019; 62(4): 558-566. doi: 10.1007/s00125-018-4787-8

Hinnouho GM, Czernichow S, Dugravot A, David B, Kivimaki M, Singh-Manoux A. Metabolically healthy obesity and risk of mortality: Does the definition of metabolic health matter? Diabetes Care. 2013; 36(8): 2294-2300. doi: 10.2337/dc12-1654

Stefan N, Hans UH, Frank BH, Matthias BS. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013; 1(2): 152-162. doi: 10.1016/S2213-8587(13)70062-7

Meng H, Nirupa RM, Dayong W, Lijun L, Rodríguez-Morató J, Cohen R, et al. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women - randomized crossover trial. Am J Clin Nutr. 2019; 110(2): 305-315. doi: 10.1093/ajcn/nqz095

Ruan H, Harvey FL. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α. Cytokine Growth Factor Rev. 2003; 14(5): 447-55. doi: 10.1016/s1359-6101(03)00052-2

Jager J, Grémeaux T, Cormont M, Marchand- Brustel YL, Tanti JF. Interleukin-1β-Induced Insulin Resistance in Adipocytes through down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology. 2007; 148(1): 241-251. doi: https://doi.org/10.1210/en.2006-0692

Thomson MJ, Williams MG, Frost SC. Development of Insulin Resistance in 3T3-L1 Adipocytes. J Biol Chem. 1997; 272(12): 7759-7764. doi: https://doi.org/10.1074/jbc.272.12.7759

Regazzetti C, Peraldi P, Grémeaux T, Najem- Lendom R, Ben-Sahra I, Cormont M, et al. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes. 2009; 58(1): 95-103. doi: 10.2337/db08-0457

Lo KA, Labadorf A, Kennedy NJ, Han MS, Yap YS, Matthews B, et al. Analysis of in vitro insulin-resistance models and their physiological relevance to InVivo diet-induced adipose insulin resistance. Cell Reports. 2013; 5(1): 259-270. doi: https://doi.org/10.1016/j.celrep.2013.08.039

Shapiro AL, Ringham BM, Glueck DH, Norris JM, Barbour LA, Friedman JE, et al. Infant adiposity is independently associated with a maternal high fat diet but not related to niacin intake: The healthy start study. matern child health J. 2017; 28(8): 1662- 1668. doi: 10.1007/s10995-016-2258-8

Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, et al. JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 Adipocytes. J Biol Chem. 2005; 280(42): 35361-35371. doi: 10.1074/jbc.M504611200

Guo W, Wong S, Xie W, Lei T, Luo Z. et al. Palmitate Modulates Intracellular Signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab. 2007; 293(2): E576-86. doi: 10.1152/ajpendo.00523.2006

Oliveira V, Marinho R, Vitorino D, Santos GA, Moraes JC, Dragano N, et al. Diets containing α-linolenic (Ω3) or Oleic (Ω9) fatty acids rescues obese mice from insulin resistance. Endocrinology. 2015; 156(11): 4033-4046. doi: 10.1210/en.2014-1880

Moreno-Castellanos N, Rodríguez A, Rabanal- Ruiz Y, Fernández-Vega A, López-Miranda J, Vázquez-Martínez R, et al. The Cytoskeletal protein septin 11 Is Associated with human obesity and is involved in adipocyte lipid storage and metabolism. Diabetología. 2017; 60(2): 324-235. doi: 10.1007/s00125-016-4155-5

Azahari N, Muhammad M, Ali Khan K, Muhammad T, Solachuddin J, Arief I. Dose water extract of cinnamon (Cinnamomum Zeylanicum) exhibits anti-diabetic properties in cultured 3T3-L1 adipocytes: A concurrent assessment of adipogenesis, lipolysis and glucose uptakes. J Food Nutrition Res. 2014; 2(11): 764-769. doi: 10.12691/jfnr-2-11-1

Díaz-Ruiz A, Guzmán-Ruiz R, Moreno NR, García-Rios A, Delgado-Casado N, Membrives A, et al. 2015. Proteasome dysfunction associated to oxidative stress and proteotoxicity in adipocytes compromises insulin sensitivity in human obesity. Antioxid Redox Signal. 2015; 23(7): 597-612. doi: 10.1089/ars.2014.5939

Bolsoni-Lopes A, Festuccia WT, Chimin P, Farias T, Torres-Leal FL, Cruz MM, et al. Palmitoleic Acid (n-7) increases white adipocytes GLUT4 Content and glucose uptake in association with AMPK Activation. Lipids Health Dis. 2014; 13(99). doi: 10.1186/1476-511X-13-199

D’Esposito V, Passaretti F, Hammarstedt A, Liguoro D, Terracciano D, Molea G, et al. Adipocyte- Released Insulin-like Growth Factor-1 Is Regulated by Glucose and Fatty Acids and Controls Breast Cancer Cell Growth in Vitro. Diabetologia. 2012; 55(10): 2811-2822. doi: 10.1007/s00125-012-2629-7

Palomer X, Pizarro-Delgado J, Barroso E, Vázquez- Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab. 2018; 29(3): 178-190. doi: 10.1016/j.tem.2017.11.009

Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez RM, Merlos M, et al. Oleate Reverses Palmitate-Induced Insulin Resistance and Inflammation in Skeletal Muscle Cells. J Biol Chem. 2008; 283(17): 11107-11116. doi: 10.1074/jbc.M708700200

Gong P, Li L, Liu Y, Pu J, Zhang S, Yu J, et al. Oleate Blocks Palmitate-Induced Abnormal Lipid Distribution, Endoplasmic Reticulum Expansion and Stress, and Insulin Resistance in Skeletal Muscle. Endocrinology. 2011; 152(6): 2206-2218. doi: 10.1210/en.2010-1369

Meric Erikci E, Hotamisligil GS. Lipid Signaling and Lipotoxicity in Metaflammation: Indications for Metabolic Disease Pathogenesis and Treatment. J Lipid Res. 2016; 57(12): 2099-2114. doi: 10.1194/jlr.R066514

Gonzalez-Franquesa A, Patti ME. Insulin resistance and mitochondrial dysfunction. In Adv Exp Med Biol. 2017; 465-520. doi: 10.1007/978-3-319-55330-6_25

Tumova JM, Trnka J. Excess of Free Fatty Acids as a Cause of Metabolic Dysfunction in Skeletal Muscle. Physiol Res. 2016; 65(2): 193-207. doi: 10.33549/physiolres.932993

Bhagirath C, Summers SA. Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol Metab. 2015; 26(10): 538-550. doi: 10.1016/j.tem.2015.07.006

Moreno-Castellanos N, Guzmán-Ruiz R, Cano DA, Madrazo-Atutxa A, Peinado JR, Pereira-Cunillet JL, et al. The effects of bariatric surgery-induced weight loss on adipose tissue in morbidly obese women depends on the initial metabolic status. Obes Surg. 2016; 26(8): 1757-1767. doi: 10.1007/s11695-015-1995-x

Harrison SA, Clancy BM, Pessino A, Czech MP. Activation of Cell Surface Glucose Transporters Measured by Photoaffinity Labeling of Insulin- Sensitive 3T3-L1 Adipocytes. J Biol Chem. 1992; 267(6): 3783-3788. doi: https://doi.org/10.1016/S0021-9258(19)50594-4

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Natalia Rocio Moreno–Castellanos, Alberto Angel–Martin, Gerardo Mantilla–Mora

Downloads

Download data is not yet available.