Abstract
Introduction: cardiovascular diseases are the leading cause of death in the world. Countless research has been directed towards the prediction of cardiovascular risk, in order to avoid the threat. Furthermore, the implementation automated data analysis tools have been sought to allow for information to be made readily available, not only to administrative and managerial staff, but also to clinical staff to improve the control of pathologies. Objective: to build a tool for the characterization of the population and the evaluation of cardiovascular risk in patients from centralwestern Colombia. Materials and methods: the construction of a platform for the analysis of sociodemographic and clinical data is proposed. The overall platform design model is evolutionary development, which intertwines specification, development, and validation activities. The platform presents a Vista-Controller model, which allows the creation of dynamic templates distributed in access modules controlled by user profiles. Results: the automated calculation of cardiovascular disease risk and the issuance of early warnings were implemented, which improved the management of clinical processes, as well as support for administrative decision-making, through the creation of two interactive modules on the platform. Conclusions: the union of clinical, administrative and engineering knowledge allowed the consolidation of a tool that contributes to the monitoring and traceability of patients, which guides the prioritization of possible interventions that impact the health of patients.
References
Organización Mundial de la Salud. Enfermedades cardiovasculares. OMS [Internet]. 2020. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control [Internet]. 1st ed. France. World Health Organization; 2011. Available from: https://apps.who.int/iris/handle/10665/44701
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 Update: A report from the American Heart Association. Circulation. 2020; 141(9): e139–e596. doi: https://doi.org/10.1161/CIR.0000000000000757
Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2020; 41(1): 12–85. doi: https://doi.org/10.1093/eurheartj/ehz859
Organización Panamericana de la Salud. Las ENT de un vistazo: Mortalidad de las enfermedades no transmisibles y prevalencia de sus factores de riesgo en la Región de las Américas. OPS; 2019. Disponible en: https://iris.paho.org/handle/10665.2/51752
Organización Panamericana de la Salud. Enfermedades no transmisibles: hechos y cifras. OPS; 2019. Disponible en: https://iris.paho.org/handle/10665.2/51482
Silverio A, Cavallo P, De Rosa R, Galasso G. Big Health Data and Cardiovascular Diseases: A Challenge for Research, an Opportunity for Clinical Care. Front Med (Lausanne). 2019; 6: 36. doi: https://doi.org/10.3389/fmed.2019.00036
Dawber TR, Moore FE, Mann GV. II. Coronary heart disease in the Framingham study. Int J Epidemiol. 2015; 44(6): 1767–1780. doi: https://doi.org/10.1093/ije/dyv346
O’Donnell CJ, Elosua R. Factores de riesgo cardiovascular. Perspectivas derivadas del Framingham Heart Study. Rev Esp Cardiol. 2008; 61(3): 299–310.
Torres Fernández JP, Gallo Mendoza JG, Hallo Alvear RF, Abcarius JJ, Muriel Páez MH, Fernández Lorenzo A. Gestión de la información como herramienta para la toma de decisiones en salud: escenarios más probables. Revista Cub de Investigaciones Biomédicas. 2017; 36(3): 1–10.
Verduzco Reyes G, Bautista Thompson E, Ruiz Vanoye JA, Fuentes Penna A. Modelos de tecnologías del Big Data Analytics y su aplicación en salud. Rev Pistas Edu. 2017; 128: 1583-1599.
Khedr A, Kholeif S, Saad F. An integrated business intelligence framework for healthcare analytics. Int J Adv Res Comput Sci Softw Eng. 2017; 7(5): 263-270. doi:10.23956/ijarcsse/SV7I5/0163
Diez Tetamanti JM, Rocha E, Munsberg G, Peixoto Castro JH, Neutzling AS, Jaime SF, et al. Desarrollo de un sistema georreferenciado para la gestión, movilidad y monitoreo de atención primaria de la salud comunitaria. Salud Colect. 2018; 14(1): 121–137. doi: https://doi.org/10.18294/sc.2018.1210
Leopold JA, Maron BA, Loscalzo J. The application of big data to cardiovascular disease: paths to precision medicine. J Clin Invest. 2020; 130(1): 29–38. doi: https://doi.org/10.1172/jci129203
Villarreal V, Samudio M. Plataforma para la autogestión de datos de pacientes hipertensos en Panamá. I+D Tecnológico. 2018; 14(1): 83–93.
Sakr S, Elgammal A. Towards a comprehensive data analytics framework for smart healthcare services. Big Data Research. 2016; 4(C): 44–58. doi: https://doi.org/10.1016/j.bdr.2016.05.002
Sánchez-Acevedo MA, Acosta-Chi ZA, Morales-Salgado MR. Cardiovascular risk detection through big data analysis. J Big Data Anal Transp. 2020; 5(2): 1-11.
Departamento Administrativo Nacional de Estadística. Censo Nacional de Población y Vivienda, 2018-Colombia. DANE; 2018. Disponible en: https://www.dane.gov.co/index. php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
Secretaría de Salud, Gobernación del Valle del Cauca. Análisis de situación de salud Valle del Cauca. Gobernación del Valle del Cauca; 2019. Disponible en: https://www.valledelcauca.gov.co/documentos/12672/asis-municipios-2019/
Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993; 46(2): 153–162. doi: https://doi.org/10.1016/0895-4356(93)90053-4
Sommerville I. Ingeniería del software. Madrid: Pearson educación; 2005.
Burbeck S. Applications programming in smalltalk-80 (TM): How to use Model-View-Controller (MVC). Smalltalk-80 v2. ParcPlace. 1992; 5: 1–11.
Rondón Suárez LM. Calidad en el levantamiento de requerimientos en proyectos de software. Universidad Militar Nueva Granada; 2019. Disponible en: https://repository.unimilitar.edu.co/handle/10654/31989#~:text=El%20levantamiento%20de%20requerimientos%20es,con%20los%20requisitos%20del%20cliente
López-Caballero CA, Cuello SR. Efectividad metodológica para el levantamiento de requerimientos de aplicaciones web. Rev Ontare. 2016; 4(2): 71–98.
Pérez-Virgen HL, Salamando-Mejía CA, Valencia-Ayala LS. Levantamiento de requerimientos basados en el conocimiento del proceso. Rev Científica. 2012; 2(16): 42–51. doi: https://doi.org/10.14483/23448350.4022
Hansen GW, James VH. Diseño y administración de bases de datos. Madrid: Prentice Hall. 1998.
Enríquez JG, Casas SI. Usabilidad en aplicaciones móviles. Informes Científicos – UNOA. 2013; 5(2): 25-47.
Paniagua LA, Bedoya RD, Mera C. Un método para la evaluación de la accesibilidad y usabilidad en aplicaciones móviles. TecnoLógicas. 2020; 23(48): 98-116. doi: https://doi.org/10.22430/22565337.1553
Brooke J. SUS – A quick and dirty usability scale. Usability evaluation in industry. London: Taylor and Francis; 1996. p. 198-194.
Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Int J Human-Comp Interact. 2008; 24(6): 574-594. doi: https://doi.org/10.1080/10447310802205776
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Jhon Jairo Castañeda-Gonzalez, Genaro Daza-Santacoloma, Jorge Iván Castaño-Gutiérrez