Abstract
Introduction: Endocannabinoids are a target in obesity treatment and they are produced from the essential fatty acids, the metabolites of linoleic acid act as agonists of the cannabinoid receptors type 1 (CB1), likewise, the metabolites of the linolenic acid act as inverse agonists of such receptors, hence, it is proposed that modifying the dietary intake of the essential fatty acids (Omega 6 and 3) may modulate the activation of the endocannabinoid system, this could be favorable for people with food addiction, considering how this system promotes the activity of the dopaminergic pathways that are altered in the psychoactive substances addiction. Objective: To analyze the correlation between the food addiction score and plasmatic levels of arachidonic acid in adults with obesity following a modulation of the dietary intake of essential fatty acids n-6 and n-3 food sources. Methods: A pilot study was carried out with a two-period crossover clinical trial design, in which the participants received standard and experimental treatments, in these programs, plans were provided following guidelines for the nutritional management of obesity, in addition, the experimental treatment included recommendations to reduce the intake of linoleic acid and to increase the intake of linolenic acid to obtain a ratio lower to 5:1 between these fatty acids. Results: A significant decrease in the food addiction score and plasmatic levels of arachidonic acid was observed in the participants exposed to the experimental treatment, showing a directly proportional correlation, moreover, the standard treatment was associated to inverse correlations between these variables. Conclusion: The decrease in plasmatic arachidonic acid levels was associated with lower scores on the mYFAS 2.0 of food addiction in the participants of this study following their exposure to the experimental treatment.
References
Suárez-Carmona W, Sánchez-Oliver AJ, González-Jurado JA. Physiopathology of obesity: Actual Perspective. Rev Chil Nutr. 2017; 44(3): 226–233. doi: http://dx.doi.org/10.4067/s0717-75182017000300226
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism [Internet]. 2019; 92: 6–10. doi: https://doi.org/10.1016/j.metabol.2018.09.005
Monteleone P, Piscitelli F, Scognamiglio P, Monteleone AM, Canestrelli B, Di Marzo V, et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: A pilot study. J Clin Endocrinol Metab. 2012; 97(6): E917–E924. doi: https://doi.org/10.1210/jc.2011-3018
Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol. 2018; 131: 31–42. doi: https://doi.org/10.1016/j.biopsycho.2016.12.013
Lim CT, Kola B, Feltrin D, Perez-Tilve D, Tschöp MH, Grossman AB, et al. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol Cell Endocrinol. 2013; 365(2): 303–308. doi: https://doi.org/10.1016/j.mce.2012.11.007
Senin LL, Al-Massadi O, Folgueira C, Castelao C, Pardo M, Barja-Fernandez S, et al. The gastric CB1 receptor modulates ghrelin production through the mTOR pathway to regulate food intake. PLoS One. 2013; 8(11): e80339. doi: https://doi.org/10.1371/journal.pone.0080339
Cortés-Salazar F, Suárez Ortíz JO, Cendejas Trejo NM, Mancilla-Díaz JM, López- Alonso VE, Escartín-Pérez RE. Effects of CB1 cannabinoid receptor activation in the nucleus accumbens shell on feeding behavior. Acta Colomb Psicol. 2014; 17(2): 61–68. doi: http://www.dx.doi.org/10.14718/ ACP.2014.17.2.7
Penner EA, Buettner H, Mittleman MA. The impact of marijuana use on glucose, insulin, and insulin resistance among US adults. Am J Med. 2013; 126(7): 583–589. doi: https://doi.org/10.1016/j.amjmed.2013.03.002
Woods CA, Guttman ZR, Huang D, Kolaric RA, Rabinowitsch AI, Jones KT, et al. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal. Physiol Behav. 2016;159: 52–63. doi: https://doi.org/10.1016/j.physbeh.2016.03.013
Vahatalo L, Ruohonen S, Makela S, Ailanen L, Penttinen A, Stormi T, et al. Role of the endocannabinoid system in obesity induced by neuropeptide Y overexpression in noradrenergic neurons. Nutr Diabetes. 2015; 5: 1–8. doi: https://doi.org/10.1038/nutd.2015.1
Guegan T, Cutando L, Gangarossa G, Santini E, Fisone G, Martinez A, et al. Operant behavior to obtain palatable food modifies ERK activity in the brain reward circuit. Eur Neuropsychopharmacol. 2013; 23(3): 240–252. doi: https://doi.org/10.1016/j. euroneuro.2012.04.009
Ghosh S, O'Connell JF, Carlson OD, González- Mariscal I, Kim Y, Moaddel R, et al. Linoleic acid in diets of mice increases total endocannabinoid levels in bowel and liver: modification by dietary glucose. Obes Sci Practice. 2019; 5, 383–394. doi: https://doi.org/10.1002/osp4.344
Federación Latinoamericana de Sociedades de Obesidad. II consenso latinoamericano de obesidad 2017. Gomez Cuevas R, Valenzuela Montero A, editores. 144 p. Disponible en: http://www.administracion.usmp.edu.pe/institutoconsumo/wpcontent/uploads/libro-ii-consenso-latinoamericanode-obesidad-2017.pdf
Schulte EM, Gearhardt AN. Development of the Modified Yale Food Addiction Scale Version 2.0. Eur Eat Disord Rev. 2017; 25(4): 302–308. doi: https://doi.org/10.1002/erv.2515
Obesity Expert Panel. Managing overweight and obesity in adults: Systematic Evidence review from the Obesity Expert Panel. Bethesda: NIH; 2013. Tomado de: https://www.nhlbi.nih.gov/sites/default/files/media/docs/obesity-evidence-review.pdf
Agudelo Cañas S. Recomendaciones de Ingesta de Energía y Nutrientes (RIEN) para la población colombiana. Bogotá: MSPS; 2015. 22 p. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/riendocumento-tecnico.pdf
Frankenfeld CL, Poudrier JK, Waters NM, Gillevet PM, Xu Y. Dietary intake measured from a selfadministered, online 24-hour recall system compared with 4-day diet records in an adult US population. J Acad Nutr Diet. 2012; 112(10): 1642-1647. doi: https://doi.org/10.1016/j.jand.2012.06.003
Zhong L, Huang C. Isolation and biochemical characterization of a gamma-type phospholipase A2 inhibitor from Macropisthodon rudis snake serum. Toxicon. 2016; 122: 1–6. doi: https://doi.org/10.1016/j.toxicon.2016.09.011
Kim J, Carlson ME, Kuchel GA, Newman JW, Watkins BA. Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. Int J Obes [Internet]. 2016; 40(1): 129–137. doi: https://doi.org/10.1038/ijo.2015.135
Engeli S, Lehmann A, Kaminski J, Haas V, Janke J, Zoerner AA, et al. Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects. Obesity. 2014; 1–7. doi: https://doi.org/10.1002/oby.20728
DiPatrizio N V, Joslin A, Jung K-M, Piomelli D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J. 2013; 27(6): 2513–2520. doi: https://doi.org/10.1096/fj.13-227587
Bibus D, Lands B. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot Essent Fat Acids [Internet]. 2015; 99: 19–23. doi: https://doi.org/10.1016/j.plefa.2015.04.005
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Fatty Acid Modulation of the Endocannabinoid System and the Effect on Food Intake and Metabolism. Int J Endocrinol. 2013; 1–11. doi: https://doi.org/10.1155/2013/361895
Volkow ND, Wise RA, Baler R. The dopamine motive system: Implications for drug and food addiction. Nat Rev Neurosci. 2017; 18(12): 741–752. doi: https://doi.org/10.1038/nrn.2017.130
Little TJ, Cvijanovic N, Dipatrizio NV, Argueta DA, Rayner CK, Feinle-Bisset C, et al. Endocannabinoids and cannabinoid receptors as regulators of endocrine functions and tissue metabolism: Plasma endocannabinoid levels in lean, overweight, and obese humans: Relationships to intestinal permeability markers, inflammation, and incretin secret. Am J Physiol Endocrinol Metab. 2018; 315(4): E489–495. doi: https://doi.org/10.3390/ijms23063083
Hauck C, Weiß A, Schulte EM, Meule A, Ellrott T. Prevalence of “Food Addiction” as Measured with the Yale Food Addiction Scale 2.0 in a representative German sample and its association with sex, age and weight categories. Obes Facts. 2017; 10(1): 12–24. doi: https://doi.org/10.1159/000456013
Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015; 16(10): 579–594. doi: https://doi.org/10.1038/nrn4004
Naughton S, Hanson E, Mathai M, McAinch A. The acute effect of oleic- or linoleic acid-containing meals on appetite and metabolic markers; a pilot study in overweight or obese individuals. Nutrients. 2018; 10(10): 1376. doi: https://doi.org/10.3390/nu10101376
Albracht-Schulte K, Kalupahana N, Ramalingam L, Wang S, Rahman S, Robert-McComb J, et al. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J Nut Bioch. 2018; 58. doi: https://doi.org/10.1016/j.jnutbio.2018.02.012
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Juan Pablo Morales-Basto, Samantha Agudelo, Cesar Mauricio Baracaldo-Barrera, Milton Londoño-Lemos, Elpidia Poveda-Espinosa