Abstract
Introduction: Harmful effects of ultraviolet radiation (UVR) on the skin and health in general make the daily use of sunscreens necessary. These are usually selected according to the Sun Protection Factor (SPF), which demonstrates photoprotection against UVB radiation, but, in addition, it is necessary to determine the UVA protection through parameters such as UVA Protection Factor (UVAPF) and the critical wavelength (λc). However, several studies have shown that the SPF of some products is lower than the labeled FPS, which reduces their effectiveness against radiation, especially if it is considered that users do not apply the right amount. Objective: To evaluate the UVA-UVB photoprotection capacity of 14 sunscreens by measuring the parameters: SPF, UVAPF, critical wavelength (λc) and UVA/UVB ratio in vitro. Methodology: ISO 24443 method was followed using 6μm PMMA plates and 1.3 mg/ cm2 of product was applied, a diffuse transmittance spectrophotometer was used to measure absorption of product and the evaluated parameters were obtained, subsequently, photostability of formulations by irradiation in a solar simulator was evaluated. Results: From the 14 sunscreens, 6 of then (43%) were found to have a spectrophotometric SPF lower than the labeled SPF and only 9 sunscreens met the critical wavelength and UVAPF/SPF ratio parameters to be labeled as broad spectrum according to the European Union. Conclusions: SPF measurement in vitro remains a great challenge due to the variability caused by various factors in the method; however, it continues to be an effective alternative for verifying SPF and correlative with SPF in vivo, in addition to being the accepted methodology in Europe and the United States to proclaim UVA photoprotection.
References
Osterwalder U. FPS hacia menos confusión. Rev Art Cienc Cosmet. 2023; 35: 28-38. Available from: https://heyzine.com/flip-book/93a1d06e02.html#page/30
Simões MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: A review. Cancer Lett. 2015; 357(1): 8-42. doi: 10.1016/j.canlet.2014.11.001
Krutmann J, Passeron T, Gilaberte Y, Granger C, Leone G, Narda M, et al. Photoprotection of the future: challenges and opportunities. J Eur Acad Dermatol Venereol. 2020; 34(3): 447-454. doi: 10.1111/jdv.16030
Halliday GM, Byrne SN, Kuchel JM, Poon TSC, Barnetson RStC. The suppression of immunity by ultraviolet radiation: UVA, nitric oxide and DNA damage. Photochem Photobiol Sci. 2004; 3(8): 736-740. doi: 10.1039/b313199h
Rittie L, Fisher G. UV-light-induced signal cascades and skin aging. Ageing Res Rev. 2002; 1(4): 705-720. doi: 10.1016/s1568-1637(02)00024-7
Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008; 30(2): 87-95. doi: 10.1111/j.1468-2494.2007.00415.x
Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002; 138(11): 1462-1470. doi: 10.1001/archderm.138.11.1462
Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015; 21: 16-29. doi: 10.1016/j.arr.2015.01.001
Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of nonconventional absorbers and their applications in ultraviolet protection: Emergence of non-conventional absorbers. Int J Cosmet Sci. 2011; 33(5): 385-390. doi: 10.1111/j.1468-2494.2011.00654.x
Gaspar LR, Tharmann J, Maia Campos PMBG, Liebsch M. Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. Toxicol In Vitro. 2013; 27(1): 418-425. doi: 10.1016/j.tiv.2012.08.006
Superintendencia de Industria y Comercio, Grupo de Estudios Económicos. Económicos sectoriales: protectores solares en Colombia (2015 – 2019). Bogotá: SIC; 2020. Disponible en: https://www.sic.gov.co/sites/default/files/documentos/012021/ESProtectores-Solares2020_VF.pdf
Ministerio de Salud y Protección Social. República de Colombia. Resolución 3132. Diario Oficial No. 43.367, del 20 de agosto de 1998.
Castanedo-Cázares J, Torres-Álvarez B, Briones-Estevis S, Moncada B. La inconsistencia del factor de protección solar (FPS) en México. El caso de los filtros para piel oleosa. Gac Med Mex. 2005; 141(2): 111-114.
Friedman BJ, Lim HW, Wang SQ. Photoprotection and photoaging. New York: Springer International Publishing; 2016. 2016. p. 61-74. doi: 10.1007/978-3-319-29382-0_4
Pissavini M, Doucet O, Diffey B. A novel proposal for labelling sunscreens based on compliance and performance. Int J Cosmet Sci. 2013; 35(5): 510-514. doi: 10.1111/ics.12074
Warentest S. Sonnenschutzmittel im Test: Vier versagen beim UV-Schutz [Internet]. Berlin: Stiftung Warentest; 2022. Disponible en: https://www.test.de/Test-Sonnencreme-und-Sonnensprayfuer-Erwachsene-4868984-0/
Warentest S. Sonnencreme für Kinder im Test: Die besten sind sehr gut und günstig [Internet]. Berlin: Stiftung Warentest; 2023. Disponible en: https://www.test.de/Sonnencreme-Kinder-Test-4722079-0/
Cosmetics Europe Recommendation. No. 26 on the use of alternative methods to ISO 24444:2019. Cosmetics Europe; 2019.
ISO/CD 23675. Cosmetics - Sun protection test Methods - In vitro determination of Sun Protection Factor, [Internet]. Geneva: ISO; c2024. Disponible en: https://www.iso.org/standard/76616.html
ISO/CD 23698. Cosmetics sun protection test methods- Measurement of the Sunscreen Efficacy by Diffuse Reflectance Spectroscopy. [Internet]. Geneva: ISO; c2024. Disponible en: https://www.iso.org/standard/76699.html
Pissavini M, Tricaud C, Wiener G, Lauer A, Contier M, Kolbe L, et al. Validation of an in vitro sun protection factor (SPF) method in blinded ringtesting. Int J Cosmet Sci. 2018. doi: 10.1111/ics.12459
Miksa S, Lutz D, Guy C. New approach for a reliable in vitro sun protection factor method Part I: Principle and mathematical aspects. Int J Cosmet Sci. 2015; 37(6): 555-566. doi: 10.1111/ics.12226
Miksa S, Lutz D, Guy C, Delamour E. New approach for a reliable in vitro sun protection factor method - Part II: Practical aspects and implementations. Int J Cosmet Sci. 2016; 38(5): 504-511. doi: 10.1111/ics.12327
Osterwalder U, Mueller S, Giesinger J, Herzog B. Understanding sunscreens—In vitro SPF determination requires correction for in vivo photo degradation. J Am Academy Dermatol. 2008; 58(2): AB29. doi: 10.1016/j.jaad.2007.10.142
International Organization for Standardization: ISO 24443: 2012; Determination of Sunscreen UVA Photoprotection In Vitro. Geneva: ISO; c2024.
Commission Recommendation on the efficacy of sunscreen products and the claims made relating thereto. Off J Europ Union. 2006. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:265:0039:0043:en:PDF
Vogue Arabia [Internet]. After the Purito sunscreen scandal, can we still trust SPF Ratings? Dubai: Vogue Arabia; 2021. Available from: https://en.vogue.me/beauty/purity-sunscreen-spf/
Consumer Reports [Internet]. Get the Best Sun Protection. New York: Consumer Reports; 2017. Available from: https://www.consumerreports.org/health/sun-protection/get-the-best-sunprotection-a3658235756/
Andrews DQ, Rauhe K, Burns C, Spilman E, Temkin AM, Perrone‐Gray S, et al. Laboratory testing of sunscreens on the US market finds lower in vitro SPF values than on labels and even less UVA protection. Photodermatol Photoimmunol Photomed. 2022; 38(3): 224-232. doi: 10.1111/phpp.12738
Fageon L, Moyal D, Coutet J, Candau D. Importance of sunscreen products spreading protocol and substrate roughness for in vitro sun protection factor assessment. Int J Cosmet Sci. 2009; 31(6): 405-418. doi: 10.1111/j.1468-2494.2009.00524.x
Bielfeldt S, Klette E, Rohr M, Herzog B, Grumelard J, Hanay C, et al. Multicenter methodology comparison of the FDA and ISO standard for measurement of in vitro UVA protection of sunscreen products. J Photochem Photobiol B. 2018; 189: 185-192. doi: 10.1016/j.jphotobiol.2018.10.018
Ferrero L, Pissavini M, Doucet O. How a calculated model of sunscreen film geometry can explain in vitro and in vivo SPF variation. Photochem Photobiol Sci. 2010; 9(4):540-551. doi: 10.1039/b9pp00183b
Dimitrovska Cvetkovska A, Manfredini S, Ziosi P, Molesini S, Dissette V, Magri I, et al. Factors affecting SPF in vitro measurement and correlation with in vivo results. Int J Cosmet Sci. 2017; 39(3): 310-319. doi: 10.1111/ics.12377
Pissavini M, Diffey B, Marguerie S, Carayol T, Doucet O. Predicting the efficacy of sunscreens in vivo veritas. Int J Cosmet Sci. 2012; 34(1): 44-48. doi: 10.1111/j.1468-2494.2011.00679.x
Department of Health and Human Service. Food and Drug Administration. Over-the-counter sunscreen drug products; required labeling based on effectiveness testing. CFR 21 part 201327. White Oak (Maryland): FDA; 2011. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=201.327
International Organization for Standardization. ISO 24444:2010(E) Sun protection test methods – In vivo determination of the Sun Protection Factor (SPF). Geneva: ISO; c2024. Available from: https://www.iso.org/standard/46523.html
Coll L, Chinchilla D, Pellerano G, Coll C, Stengel F. ¿Pueden compararse los valores de protectores solares efectuados con normas diferentes (FDA y COLIPA)? Acta Ter Dermatológica. 2006; 29: 330- 334.
Schalka S, Reis VMSD. Sun protection factor: meaning and controversies. An Bras Dermatol. 2011; 86(3): 507-515. doi: 10.1590/s0365-05962011000300013
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Valentina Lopera-Giraldo, Madelen López-López, Juan Camilo Mejía-Giraldo