How much is known about the genetic diversity of the Asian tiger mosquito? A systematic review
PDF
HTML (Español (España))

Keywords

Aedes albopictus
genetic markers
gene flow

How to Cite

Aguirre Obando, O. A., & Navarro Silva, M. A. (2017). How much is known about the genetic diversity of the Asian tiger mosquito? A systematic review. Salud UIS, 49(3), 422–437. https://doi.org/10.18273/revsal.v49n3-2017001

Abstract

 Introduction: Aedes (Stegomyia) albopictus (Skuse, 1894) is a vector for dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. Knowledge of the genetic diversity of insect vectors is critical for the effective control and elimination of vector-borne diseases.  Objective: We determined the current scenario of the genetic diversity in natural populations of A. albopictus through a systematic review.  Methodology: It was possible to establish the first reports and distribution of A. albopictus populations in the world, as well as its genetic diversity, population genetic structure and molecular markers used to determine its genetic diversity.  Results: A. albopictus is distributed worldwide with genetically structured populations and low diversity; however, 89.5% of the genetic diversity known is based on the use of RFLP, allozymes, isozymes, and mtDNA molecular markers that exhibit significant problems according to the literature. After the results were obtained, a critical analysis was carried out and existing shortcomings were detected.  Conclusion: The current knowledge of genetic diversity of A. albopictus is based on genetic markers that exhibit significant problems reported in the literature; therefore, vector control programs targeting A. albopictus populations, may be compromised

Keywords: Aedes albopictus, Genetic Markers, Gene Flow.
https://doi.org/10.18273/revsal.v49n3-2017001
PDF
HTML (Español (España))

References

1. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013; 29(9): 460-468. DOI: 10.1016/j.pt.2013.07.003.

2. Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J Royal Soc Interface. 2012; 2708-2017. DOI: 10.1098/rsif.2012.0138.

3. Carvalho RG, Lourenço-de-Oliveira R, Braga IA. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz. 2014; 109(6): 787-796.

4. Rey JR, Lounibos P. Ecología de Aedes aegyptiy Aedes albopictus en América y la transmisión de enfermedades. Biomédica. 2015; 35(2). DOI: https://doi.org/10.7705/biomedica.v35i2.2514.

5. Genchi C, Kramer LH, Rivasi F. Dirofilarial infections in Europe. Vector Borne Zoonotic Dis. 2011; 11(10): 1307-1317. DOI: 10.1089/vbz.2010.0247.

6. Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R. High level of vector competence of Aedes aegypti and Aedes albopictusfrom ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014; 88(11): 6294-6306. DOI: http://dx.doi.org/10.1128/JVI.00370-14.

7. Martins VEP, Alencar CH, Kamimura MT, de Carvalho Araujo FM, De Simone SG, Dutra RF, et al. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One. 2012; 7(7): e41386. DOI: 10.1371/journal.pone.0041386.

8. Rúa-Uribe GL, Suárez-Acosta C, Rojo RA. Implicaciones epidemiológicas de Aedes albopictus(Skuse) en Colombia. Rev Fac Nac Salud Pública. 2012; 30(3).

9. Higgs S, Vanlandingham DL. Chikungunya: here today, where tomorrow? Int Health. 2015; 7(1): 1-3. DOI: 10.1093/inthealth/ihu092.

10. de Alencar CHM, de Albuquerque LM, de Aquino TMF, Soares CB, Ramos Júnior AN, Lima JWdO, et al. Potencialidades do Aedes albopictus gomo vetor de arboviroses no brasil: um desafio para a atenção primária. Rev Atencao Prim Saude. 2008; 11(4).

11. Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux A-B. Chikungunya virus and Aedesmosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One. 2009; 4(6): e5895. DOI: 10.1371/journal.pone.0005895.

12. Vazeille M, Martin E, Mousson L, Failloux A, editors. Chikungunya, a new threat propagated by the cosmopolite Aedes albopictus. BMC Proc; 2011: BioMed Central Ltd.

13. Ravi V. Re-emergence of chikungunya virus in India. Indian J Med Microbiol. 2006; 24(2): 83-84.

14. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector-Borne Zoonotic Dis. 2010; 10(3): 259-266. DOI: 10.1089/vbz.2009.0005.

15. Enserink M. Entomology. A mosquito goes global. Science. 2008; 320(5878): 864–866. DOI: 10.1126/science.320.5878.864.

16. WHO. Dengue and severe dengue. 2014.

17. Lourenço-de-Oliveira R, Vazeille M, de Filippis A, Failloux A. Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg. 2004; 98(1): 43-54. DOI: 10.1016/S0035-9203(03)00006-3.

18. Ibáñez-Bernal S, Briseno B, Mutebi JP, Argot E, Rodriguez G, Martinez-Campos C, et al. First record in America of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa, Mexico. Med Vet Entomol. 1997; 11(4): 305-309. DOI: 10.1111/j.1365-2915.1997.tb00413.x.

19. Mendez F, Barreto M, Arias JF, Rengifo G, Munoz J, Burbano ME, et al. Human and mosquito infections by dengue viruses during and after epidemics in a dengue–endemic region of Colombia. Am J Trop Med Hyg. 2006; 74(4): 678-683. DOI: 10.4269/ajtmh.2006.74.678.

20. Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010; 4(5): e646. DOI: 10.1371/journal.pntd.0000646.

21. OPS. Descripción de la situación epidemiologica actual del dengue en las Américas United States of America; 2013.

22. OPS. Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas, by Country. United States of America: Organización Mundial de la Salud; 2015.

23. Urdaneta-Marquez L, Failloux A-B. Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infect Genet Evol. 2011; 11(2): 253-261. DOI: 10.1016/j.meegid.2010.11.020.

24. Black IV WC, Ferrari JA, Rai KS, Sprenger D. Breeding structure of a colonizing species: Aedes albopictus (Skuse) in the United States. Heredity (Edinb). 1988; 60(Pt 2): 173-181. DOI: 10.1038/hdy.1988.29.

25. Kambhampati S, Black WC, Rai KS. Geographic origin of the US and Brazilian Aedes albopictusinferred from allozyme analysis. Heredity (Edinb). 1991; 67(Pt 1): 85-93. DOI: 10.1038/hdy.1991.67.

26. Kambhampati S, Rai KS. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome. 1991; 34(2): 288-292. DOI: 10.1139/g91-046.

27. Ayres C, Romão T, Melo-Santos M, Furtado A. Genetic diversity in Brazilian populations of Aedes albopictus. Mem Inst Oswaldo Cruz. 2002; 97(6): 871-875. DOI: 10.1590/S0074-02762002000600022.

28. Birungi J, Munstermann LE. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann Entomol Soc Am. 2002; 95(1): 125-132. DOI: https://doi.org/10.1603/0013-8746(2002)095[0125:GSOAAD]2.0.CO;2.

29. Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA Analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis. 2013; 7(12): e2590. DOI: 10.1371/journal.pntd.0002590.

30. Haddad N, Mousson L, Vazeille M, Chamat S, Tayeh J, Osta MA, et al. Aedes albopictus in Lebanon, a potential risk of arboviruses outbreak. BMC Infect Dis. 2012; 12(1): 300. DOI: 10.1186/1471-2334-12-300.

31. Shaikevich E, Talbalaghi A. Molecular Characterization of the Asian Tiger Mosquito Aedes albopictus (Skuse)(Diptera: Culicidae) in Northern Italy. ISRN Entomology. 2013; 2013. DOI: http://dx.doi.org/10.1155/2013/157426.

32. Delatte H, Toty C, Boyer S, Bouetard A, Bastien F, Fontenille D. Evidence of habitat structuring Aedes albopictus populations in Réunion Island. PLoS Negl Trop Dis. 2013; 7(3): e2111. DOI: 10.1371/journal.pntd.0002111.

33. Urbanelli S, Bellini R, Carrieri M, Sallicandro P, Celli G. Population structure of Aedes albopictus (Skuse): the mosquito which is colonizing Mediterranean countries. Heredity (Edinb). 2000; 84(Pt 3): 331-337. DOI: 10.1046/j.1365-2540.2000.00676.x.

34. De Oliveira RL, Vazeille M, De Filippis AMB, Failloux A-B. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands. Am J Ttrop Med Hyg. 2003; 69(1): 105-114. DOI: 10.4269/ajtmh.2003.69.105.

35. Gupta S, Preet S. Genetic differentiation of invasive Aedes albopictus by RAPD-PCR: implications for effective vector control. Parasitol Res. 2014; 113(6): 2137-2142. DOI: 10.1007/s00436-014-3864-2.

36. Usmani-Brown S, Cohnstaedt L, Munstermann LE. Population genetics of Aedes lbopictus(Diptera: Culicidae) invading populations, using mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 sequences. Ann Entomol Soc Am. 2009; 102(1): 144-150. DOI: 10.1603/008.102.0116.

37. Araya-Anchetta A, Busch JD, Scoles GA, Wagner DM. Thirty years of tick population genetics: a comprehensive review. Infect Genet Evol. 2015; 29: 164-179. DOI: 10.1016/j.meegid.2014.11.008.

38. Behura SK. Molecular marker systems in insects: current trends and future avenues. Mol Ecol. 2006; 15(11): 3087-3113. DOI: 10.1111/j.1365-294X.2006.03014.x.

39. Hunter R, Markert C. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science. 1957; 125 (3261): 1294-1295. DOI: 10.1126/science.125.3261.1294-a.

40. Markert C, Møller F. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc Natl Acad Sci USA. 1959; 45(5): 753-763.

41. Lewontin R, Hubby J. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966; 54(2): 595-609.

42. Jonah P, Bello L, Lucky O, Midau A, Moruppa S. The importance of molecular markers in plant breeding programmes. Global J Sci Frontier Res. 2011; 11(5): 5-12.

43. Jain SK, Neekhra B, Pandey D, Jain K. RAPD marker system in insect study: a review. Indian J Biotechnol. 2010; 9(1): 7-12.

44. Parker P, Snow A, Schug M, Booton G, Fuerst P. What molecules can tell us about populations: choosing andusing a molecular marker. Ecology. 1998; 79(2): 361-382. DOI: 10.1890/0012-9658(1998)079[0361:WMCTUA]2.0.CO;2.

45. Murray TE, Fitzpatrick U, Brown MJ, Paxton RJ. Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics. 2008; 9(3): 653-666. DOI: 10.1007/s10592-007-9394-z.

46. Finger A, Klank C. Review Molecular Methods: Blessing or Curse? Relict Species: Springer; 2010. p. 309-320. DOI: 10.1007/978-3-540-92160-8_18.

47. Gonçalves A, Cunha I, Santos W, Luz S, Ribolla P, Abad-Franch F. Gene flow networks among American Aedes aegypti populations. Evol Appl. 2012; 5(7): 664-676. DOI: 10.1111/j.1752-4571.2012.00244.x.

48. Silva-Brandão KL, Santos TV, Cônsoli FL, Omoto C. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): implications for pest management. J Econ Entomol. 2015;108(1): 307-316. DOI: 10.1093/jee/tou040.

49. Sharma M, Singh D, Sharma AK. Mitochondrial DNA based identification of forensically important Indian flesh flies (Diptera: Sarcophagidae). Forensic Sci Int. 2015; 247: 1-6. DOI: 10.1016/j.forsciint.2014.11.017.

50. Kocher A, Guilbert É, Lhuillier É, Murienne J. Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C R Biol. 2015; 338(3): 149-160. DOI: 10.1016/j.crvi.2014.12.004.

51. Ribeiro L. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotrop. 2012; 12(3): 301-308. DOI: http://dx.doi.org/10.1590/S1676-6032012000300029.

52. Haran J, Koutroumpa F, Magnoux E, Roques A, Roux G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J Zool Syst Evol Res. 2015; 53(2): 109-115. DOI: 10.1111/jzs.12095.

53. Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, et al. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet. 2009; 10(1): 11. DOI: 10.1186/1471-2156-10-11.

54. Collins F, Paskewitz S. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol. 1996; 5(1): 1-9. DOI: 10.1111/j.1365-2583.1996.tb00034.x.

55. Musters W, Boon K, Van der Sande C, Van Heerikhuizen H, Planta R. Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J. 1990; 9(12): 3989-3996.

56. Hillis D, Dixon M. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991; 66(4): 411-453. DOI: 10.1086/417338.

57. Stevens L, Monroy MC, Rodas AG, Hicks RM, Lucero DE, Lyons LA, et al. Migration and gene flow among domestic populations of the chagas insect vector Triatoma dimidiata (Hemiptera: Reduviidae) detected by microsatellite Loci. J Med Entomol. 2015; 52(3): 419-428. DOI: 10.1093/jme/tjv002.

58. Zheng L, Benedict M, Cornel A, Collins F, Kafatos F. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics. 1996; 143(2): 941-952.

59. Smith J, Keyghobadi N, Matrone M, Escher R, Fonseca D. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes. 2005; 5(3): 697-700. DOI: 10.1111/j.1471-8286.2005.01034.x.

60. Slotman M, Kelly N, Harrington L, Kitthawee S, Jones J, Scott T, et al. Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever. Mol Ecol Notes. 2007;7(1):168-171. DOI: 10.1111/j.1471-8286.2006.01533.x.

61. Monteiro F, Shama R, Martins A, Gloria-Soria A, Brown J, Powell J. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program. PLoS Negl Trop Dis. 2014; 8(9): e3167. DOI: 10.1371/journal.pntd.0003167.

62. Rai KS. Aedes albopictus in the Americas. Annu Rev Entomol. 1991; 36(1): 459-484. DOI: 10.1146/annurev.en.36.010191.002331.

63. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases. 2007; 7(1): 76-85. DOI: 10.1089/vbz.2006.0562.

64. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012; 12(6): 435-447. DOI: 10.1089/vbz.2011.0814.

65. Waldock J, Chandra NL, Lelieveld J, Proestos Y, Michael E, Christophides G, et al. The role of environmental variables on Aedes albopictusbiology and chikungunya epidemiology. Pathog Globa Health. 2013; 107(5): 224-241. DOI: 10.1179/2047773213Y.0000000100.

66. Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti-A Review. Mem Inst Oswaldo Cruz. 2013; 108(Supp 1): 11-17. DOI: 10.1590/0074-0276130395.

67. IRAC. Prevention and Management of Insecticide Resistance in Vectors of Public Health Importance. Second Edition ed: Insecticide Resistance Action Committee (IRAC); 2011.

68. Žitko T, Kovačić A, Yves D, Puizina J. Genetic variations of the Asian tiger mosquito, Aedes albopictus (Skuse)(Diptera: Culicidae) in East-Adriatic populations inferred from NADH5 and COI sequence variability. Eur J Entomol. 2011; 108(4): 501-508. DOI: 10.14411/eje.2011.065.

69. Zawani MKN, Abu HA, Sazaly AB, Zary SY, Darlina MN. Population genetic structure of Aedes albopictus in Penang, Malaysia. Genet Mol Res. 2014; 13(4): 8184-8196. DOI: 10.4238/2014.

70. Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012; 104(2): 126-131. DOI: https://doi.org/10.1016/j.pestbp.2012.05.008.

71. Ranson H, Burhani J, Lumjuan N, Black W. Insecticide resistance in dengue vectors. TropIKA Net. 2010; 1(1):1-12.

72. Aguirre-Obando O, Dalla Bonna A, Duque Luna J, Navarro-Silva M. Insecticide resistance and genetic variability in natural populations of Aedes(Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia (Curitiba). 2015; 32(1): 14-22. DOI: http://dx.doi.org/10.1590/S1984-46702015000100003.

73. Bona ACD, Piccoli CF, Leandro AdS, Kafka R, Twerdochilib AL, Navarro-Silva MA. Genetic profile and molecular resistance of Aedes(Stegomyia) aegypti (Diptera: Culicidae) in Foz do Iguaçu (Brazil), at the border with Argentina and Paraguay. Zoologia (Curitiba). 2012; 29(6): 540-548. DOI: http://dx.doi.org/10.1590/S1984-46702012000600005.

74. Yáñez P, Manami E, Valle J, Garcia M, León W, Villaseca P, et al. Variabilidad genética del Aedes aegypti determinada mediante el análisis del gen mitocondrial ND4 en once áreas endémicas para dengue en el Perú. Rev Peru Med Exp Salud Publica. 2013; 30(2): 246-250.

75. Ayres C, Melo-Santos M, Prota J, Solé-Cava A, Furtado A. Genetic structure of natural populations of Aedes aegypti at the micro- and macro geographic levels in Brazil. J Am Mosq Control Assoc. 2004; 20(4): 350-356.

76. Paupy C, Vazeille-Falcoz M, Mousson L, Rodhain F, Failloux A-B. Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. Am J Trop Med Hyg. 2000; 62(2): 217-224. DOI: 10.4269/ajtmh.2000.62.217.

77. Caldera S, Jaramillo S, Cochero S, Pérez-Doria A, Bejarano E. Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del norte de Colombia, con baja y alta incidencia de dengue. Biomedica 2013; 33(1) :89-98. DOI: http://dx.doi.org/10.7705/biomedica.v33i0.1573.

78. Twerdochlib A, Dalla A, Leite S, Chitolina R, B W, Navarro-Silva MA. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev Bras Entomol. 2012; 56(2): 249-256. DOI: http://dx.doi.org/10.1590/S0085-56262012005000030.

79. Bracco JE, Capurro ML, Lourenço-de-Oliveira R, Sallum MAM. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz. 2007; 102(5): 573-580. DOI: 10.1590/S0074-02762007005000062.

80. Paduan KDS, Ribolla PEM. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol. 2008 ;45(1): 59-67. DOI: 10.1603/0022-2585(2008)45[59:MDPAHI]2.0.CO;2.

81. Saavedra-Rodriguez K, Suarez A, Salas I, Strode C, Ranson H, Hemingway J, et al. Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol. 2012; 21(1): 61-77. DOI: doi: 10.1111/j.1365-2583.2011.01113.x.

82. García GP, Flores AE, Fernández-Salas I, Saavedra-Rodríguez K, Reyes-Solis G, Lozano-Fuentes S, et al. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico. PLoS Negl Trop Dis. 2009; 3(10): e531. DOI: 10.1371/journal.pntd.0000531.

83. Chaverra-Rodríguez D, Jaramillo-Ocampo N, Fonseca-Gonzalez I. Selección artificial de resistencia a lambda-cialotrina en Aedes aegypti y resistencia cruzada a otros insecticidas. Rev Colomb Entomol. 2012; 38(1): 100-107.

84. Rodríguez M, Bisset J, Díaz C, Soca L. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la selección con el insecticida organofosforado malation. Rev Cubana Med Trop. 2003; 55(2): 105-111.

85. Melo-Santos M, Varjal-Melo J, Araújo A, Gomes T, Paiva M, Regis L, et al. Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010; 113(2): 180-189. DOI: 10.1016/j.actatropica.2009.10.015.

86. Hiragi C, Simões K, Martins E, Queiroz P, Lima L, Monnerat R. Variabilidade genética em populações de Aedes aegypti (L.) (Diptera: Culicidae) utilizando marcadores de RAPD. Neotrop Entomol. 2009; 38(4): 542-547. DOI: http://dx.doi.org/10.1590/S1519-566X2009000400018.

87. Rašić G, Filipović I, Weeks A, Hoffmann A. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014; 15(275): 1-12. Doi: 10.1186/1471-2164-15-275.

88. Becerra V, Paredes M. Uso de marcadores bioquímicos y moleculares en estudios de diversidad genética. Agric Téc. 2000; 60(3): 270-281. DOI: http://dx.doi.org/10.4067/S0365-28072000000300007.

89. Eguiarte L, Souza V, Aguirre X. Ecología molecular. México: Instituto Nacional de Ecología; 2007. 608 p.

90. Bensasson D, Zhang D, Hartl D, Hewitt G. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol. 2001; 16(6): 314-321. DOI: 10.1016/S0169-5347(01)02151-6.

91. Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol. 2004; 21(6): 1081-1084. DOI: https://doi.org/10.1093/molbev/msh110.

92. Arthofer W, Avtzis D, Riegler M, Stauffer C. Mitochondrial phylogenies in the light of pseudogenes and Wolbachia: re-assessment of a bark beetle dataset. ZooKeys. 2010 (56): 269-280. DOI: 10.3897/zookeys.56.531.

93. Black I, Bernhardt S. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegyptigenome. Insect Mol Biol. 2009;18(6): 705-713. DOI: 10.1111/j.1365-2583.2009.00925.x.

94. Leite L. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotropica. 2012; 12(3): 301-308. DOI: 10.1590/S1676-06032012000300029.

95. Hazkani-Covo E, Zeller R, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010; 6(2): e1000834. DOI: 10.1371/journal.pgen.1000834.

96. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet. 2008; 42: 683-707. DOI: 10.1146/annurev.genet.41.110306.130354.

97. Hurst GD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc B. 2005; 272(1572): 1525-1534. DOI: 10.1098/rspb.2005.3056.

98. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux A-B. The native Wolbachiasymbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012; 6(12): e1989. DOI: 10.1371/journal.pntd.0001989.

99. Blagrove MS, Arias-Goeta C, Failloux A-B, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. PNAS. 2012; 109(1): 255-260. DOI: 10.1073/pnas.1112021108.

100.Navarro J, Quintero L, Zorrilla A, González R. Molecular Tracing with Mitochondrial ND5 of the Invasive Mosquito Aedes (Stegomyia) albopictus(Skuse) in Northern South America. 2013. J. Entomol Zool Stud. 2013; 1 (4): 32-39.

101.Taillon-Miller P, Gu Z, Li Q, Hillier L, Kwok P. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res. 1998; 8(7): 748-754. DOI: 10.1101/gr.8.7.748.

102.Wang D, Fan J, Siao C, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998; 280(5366): 1077-1082. DOI: 10.1126/science.280.5366.1077.

103. Sachidanandam R, Weissman D, Schmidt S, Kakol J, Stein L, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001; 409(6822): 928-933. DOI: 10.1038/35057149.

104. Wondji C, Hemingway J, Ranson H. Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. BMC Genomics. 2007; 8(1): 5. DOI: 10.1186/1471-2164-8-5.

105. Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, et al. A Multipurpose High Throughput SNP Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti. G3: Genes| Genomes| Genetics. 2015; 5(5): 711-718. DOI: 10.1534/g3.114.016196.

106. Paduan K, Ribolla P. Characterization of eight single nucleotide polymorphism markers in Aedes aegypti. Mol Ecol Resour. 2009; 9(1): 114-116. DOI: 10.1111/j.1755-0998.2008.02282.x.

107. Morlais I, Severson W. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti. Insect Mol Biol. 2003; 12(6): 631-639. DOI: 10.1046/j.1365-2583.2003.00449.x.

108. Adhami J, Murati N. The presence of the mosquito Aedes albopictus in Albania. Rev Mjekesore. 1987 (1): 13-16.

109. Toto JC, Abaga S, Carnevale P, Simard F. First report of the oriental mosquito Aedes albopictuson the West African island of Bioko, Equatorial Guinea. Med Vet Entomol. 2003; 17(3): 343-346. DOI: 10.1046/j.1365-2915.2003.00447.x.

110. Le Maitre A, Chadee DD. Arthropods collected from aircraft at Piarco International airport, Trinidad, West Indies. Mosq News. 1983; 43(1): 21-23.

111. Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux A-B. Phylogeography of Aedes(Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse)(Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res. 2005; 86(1): 1-11. DOI: 10.1017/S0016672305007627.

112. Sprenger D, Wuithiranyagool T. The discovery and distribution of Aedes albopictus (Skuse) in Harris Country, Texas. J Am Mosq Control Assoc. 1986; 2(2): 217–219.

113. Scholte E-J, Schaffner F. 14. Waiting for the tiger: establishment and spread of the Aedes albopictusmosquito in Europe. Emerging pests and vector-borne diseases in Europe. 2007;1:241.

114. Forattini O. Identificação de Aedes (Stegomyia) albopictus (Skuse) no Brasil. Rev Saúde Publ. 1986; 20(3): 244-245.

115. ISID. Panama detects new dengue carrying mosquito ProMED-mail: http://www.promedmail.org; 2002 [cited 2014 19/05/2014]. Available from: http://www.promedmail.org/direct.php?id=20021108.5753.

116. Ibanez-Bernal S, Martinez-Campos C. Aedes albopictus in Mexico. J Am Mosq Control Assoc. 1994; 10(2 Pt 1): 231-232.

117. Flacio E, Lüthy P, Patocchi N, Guidotti F, Tonolla M, Peduzzi R. Primo ritrovamento di Aedes albopictus in Svizzera. STSN. 2004; 92(1-2): 141-142.

118. Kay B, Ives W, Whelan P, Barker-Hudson P, Fanning I, Marks E. Is Aedes albopictus in Australia?. Med J Austral. 1990; 153(1): 31-34.

119. Lugo EDC, Moreno G, Zachariah MA, López MM, López JD, Delgado MA, et al. Identification of Aedes albopictus in urban Nicaragua. J Am Mosq Control Assoc. 2005; 21(3): 325-327. DOI: 10.2987/8756-971X(2005)21[325:IOAAIU]2.0.CO;2.

120. Sabatini A, Raineri V, Trovato G, V. T, Coluzzi M. Aedes albopictus in Italia e possible diffusione della specie nell’area mediterranea. Parassitologia. 1990; 32(3): 301–304.

121. Rossi GC, Martínez M. MOSQUITOS (DIPTERA: CULlCIDAE) DEL URUGUAY. Entomol Vect. 2003; 10(4): 469·478.

122. Savage H, Ezike V, Nwankwo A, Miller B. First record of breeding populations of Aedes albopictus in continental Africa: Implications for arboviral transmission. J Am Mosq Control Assoc. 1992; 8(1): 101–103.

123. Pener H, Wilamowski A, Schnur H, Orshan L, Shalom U, Bear A. Aedes albopictus in Israel. Europ Mosq Bull. 2003; 14:32.

124. Cornel A, Hunt R. Aedes albopictus in Africa? First records of live specimens in imported tires in Cape Town. J Am Mosq Control Assoc. 1991; 7(1): 107-108.

125. Schaffner F, Van Bortel W, Coosemans M. First record of Aedes (Stegomyia) albopictus in Belgium. J Am Mosq Control Assoc. 2004; 20(2): 201-203.

126. Reiter P. Aedes albopictus and the world trade in used tires, 1988-1995: the shape of things to come? J Am Mosq Control Assoc. 1998; 14(1): 83-94.

127. Aranda C, Eritja R, Roiz D. First record and establishment of the mosquito Aedes albopictus in Spain. Med Vet Entomol. 2006; 20(1): 150-152. DOI: 10.1111/j.1365-2915.2006.00605.x.

128. Peña C. First report of Aedes (Stegomyia) albopictus(Skuse) from the Dominican Republic. Soc Vector Ecol.. 1993; 24(4): 4-5.

129. Klobučar A, MERDIC E, BENIC N, BAKLAIC Ž, KRČMAR S. First record of Aedes albopictusin Croatia. J Am Mosq Control Assoc. 2006; 22(1): 147-148. DOI: 10.2987/8756-971X(2006)22[147:FROAAI]2.0.CO;2.

130. Broche R, Borja E. Aedes albopictus in Cuba. J Am Mosq Control Assoc. 1999; 15(4): 569-570.

131. Scholte E-J, Jacobs F, Linton Y-M, Dijkstra E, Fransen J, Takken W. First record of Aedes (Stegomyia) albopictus in the Netherlands. Eur Mosq Bull. 2007; 22: 5-9.

132. Ogata K, Lopez S. Discovery of Aedes albopictusin Guatemala. J Am Mosq Control Assoc. 1996; 12(3 Pt 1): 503-506.

133. Samanidou-Voyadjoglou A, Patsoula E, Spanakos G, Vakalis N. Confirmation of Aedes albopictus(Skuse) (Diptera: Culicidae) in Greece. Eur Mosq Bull. 2005; 19: 10-12.

134. Petric D, Zgomba M, Ignjatovic A, Pajovic I, Merdic E, Boca I, et al., editors. Invasion of the Stegomyia albopicta to a part of Europe. Presentation at the 15th European Society for Vector Ecology Meeting; 2006.

135. Pluskota B, Storch V, Braunbeck T, Beck M, Becker N. First record of Stegomyia albopicta(Skuse)(Diptera: Culicidae) in Germany. Eur Mosq Bull. 2008; 26: 1-5.

136. Gatt P, Deeming JC, Schaffner F. First record of Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) in Malta. Eur Mosq Bull. 2009; 27: 56-64.

137. Rossi GC, Pascual N, Krsticevic FJ. First record of Aedes albopictus (Skuse) from Argentina. J Am Mosq Control Assoc. 1999; 15: 422.

138. Calderón-Arguedas O, Avendaño A, López-Sánchez W, Troyo A. Expansion of Aedes albopictusSkull in Costa Rica. Revista Ibero-Latinoamericana de Parasitología. 2010; 9(2): 220-222.

139. Vélez ID, Quiñones ML, Suárez M, Olano V, Murcia LM, Correa E, et al. Presencia de Aedes albopictus en Leticia, Amazonas, Colombia. Biomédica. 1998; 18(3): 192-198. DOI: 10.7705/biomedica.v18i3.990.

140. Navarro J, Zorrilla A, Moncada N. Primer registro de Aedes albopictus (Skuse) en Venezuela. Importancia como vector de dengue y acciones a desarrollar. Bol Mal Salud Amb. 2009; 49(1): 161-166.

141. Marquetti Fernández Md, Jean YS, Fuster Callaba CA, Somarriba López L. The first report of Aedes (Stegomyia) albopictus in Haiti. Mem Inst Oswaldo Cruz. 2012; 107(2): 279-281. DOI: 10.1590/S0074-02762012000200020.

142. Schaffner F, Karch S. Première observation d’Aedes albopictus (Skuse, 1894) en France métropolitaine. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie. 2000; 323(4): 373-375. DOI: 10.1016/S0764-4469(00)00143-8.

143. Oter K, Gunay F, Tuzer E, Linton Y-M, Bellini R, Alten B. First record of Stegomyia albopicta in Turkey determined by active ovitrap surveillance and DNA barcoding. Vector Borne Zoonotic Dis. 2013; 13(10): 753-761. DOI: 10.1089/vbz.2012.1093.

144. Fontenille D, Toto JC. Aedes (Stegomyia) albopictus (Skuse), a potential new Dengue vector in southern Cameroon. Emerg Infect Dis. 2001; 7(6): 1066-1067. DOI: 10.3201/eid0706.010631.

145. Guillaumot L, Ofanoa R, Swillen L, Singh N, Bossin HC, Schaffner F. Distribution of Aedes albopictus (Diptera, Culicidae) in southwestern Pacific countries, with a first report from the Kingdom of Tonga. Parasit Vectors. 2012; 5(247): 1-6. DOI: 10.1186/1756-3305-5-247.

146. MSC. Situación epidemiológica dengue en Isla de Pascua, Chile insular Ministerio de Salud de Chile: Ministerio de Salud de Chile; 2000.

147. Bocková E, Kočišová A, Letková V. First record of Aedes albopictus in Slovakia. Acta Parasitol. 2013; 58(4): 603-606. DOI: 10.2478/s11686-013-0158-2.

148. Zhong D, Lo E, Hu R, Metzger ME, Cummings R, Bonizzoni M, et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS One. 2013; 8(7): e68586. DOI: 10.1371/journal.pone.0068586.

149. Raharimalala FN, Ravaomanarivo LH, Ravelonandro P, Rafarasoa LS, Zouache K, Tran-Van V, et al. Biogeography of the two major arbovirus mosquito vectors, Aedes aegyptiand Aedes albopictus (Diptera, Culicidae), in Madagascar. Parasit Vectors. 2012; 5(1): 1-10. DOI: 10.1186/1756-3305-5-56.

150. Delatte H, Bagny L, Brengue C, Bouetard A, Paupy C, Fontenille D. The invaders: Phylogeography of dengue and chikungunya viruses Aedes vectors, on the South West islands of the Indian Ocean. Infect Genet Evol. 2011; 11(7): 1769-1781. DOI: 10.1016/j.meegid.2011.07.016.

151. Kamgang B, Brengues C, Fontenille D, Njiokou F, Simard F, Paupy C. Genetic structure of the tiger mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS One. 2011; 6(5): e20257. DOI: 10.1371/journal.pone.0020257.

152. Maia R, Scarpassa V, Maciel-Litaiff L, Tadei W. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Genet Mol Res. 2009; 8(3): 998-1007.

153. Ritchie SA, Moore P, Carruthers M, Williams C, Montgomery B, Foley P, et al. Discovery of a widespread infestation of Aedes albopictus in the Torres Strait, Australia. J Am Mosq Control Assoc. 2006; 22(3): 358-365. DOI: 10.2987/8756-971X(2006)22[358:DOAWIO]2.0.CO;2.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.