Abstract
Introduction: Obese subjects exhibit a decreased functional capacity (FC) which, among other factors, entails a slower oxygen uptake kinetics associated to a pathological relationship between the adipose tissue and a chronically-deregulated autonomic nervous system, both in resting and exercise conditions. Objective: To analyze the fast-tau behavior of the oxygen consumption off-kinetics, after applying a high intensity and short duration intervallic exercise protocol (HIIT) in a group of obese men. Methodology: An exploratory, comparative, experimental and longitudinal short-term study of 5 obese subjects, selected by intentional non-probabilistic sampling, was designed. Weight, height, body mass index (BMI), waist circumference, kinetics of oxygen consumption and variables related to the procedure were assessed. Data from VO2 v/s time were compiled with Graph Pad Prism v. 6.01 by averaging 10-second intervals and fitted as a bi-exponential model. Subsequently, a descriptive statistical analysis was performed using SigmaPlot v. 12.5, calculating means, standard deviations and ranks. Results: Mean age was 25.13 + 0.62 years. Highest variation when analyzing the results, in both phases of the study (pre-intervention: 43.09 + 7.78 s; post-intervention: 26.85 + 3.78 s), was found in the fast VO2tau (p=0.034). Conclusion: The high-intensity, short-duration training performed over a 10-day period, achieves a positive effect on the rapid kinetic component of VO2 for the studied population, improving recovery time after physical exertion.
References
2. Organización Mundial de la Salud. Informe Mundial Sobre la Diabetes. Ginebra. 2016; (4): 1-4.
3. Rodríguez DA, Garcia-Aymerich J, Valera JL, Sauleda J, Togores B, Galdiz JB, et al. Determinants of exercise capacity in obese and non-obese COPD patients. Respir Med. 2014; 108(5): 745-751.
4. Lambrick D, Faulkner J, Westrupp N, McNarry M. The influence of body weight on the pulmonary oxygen uptake kinetics in pre-pubertal children during moderate- and heavy intensity treadmill exercise. Eur J Appl Physiol. 2013; 113(8): 1947-1955.
5. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physio. 2010; 108(1): 206-211.
6. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012; 17(1): 43-49.
7. DeLorey DS, Wyrick BL, Babb TG. Mild-tomoderate obesity: implications for respiratory mechanics at rest and during exercise in young men. Int J Obes (Lond). 2005; 29(9): 1039-1047.
8. Kriketos AD, Baur LA, O’Connor J, Carey D, King S, Caterson ID, et al. Muscle fibre type composition in infant and adult populations and relationships with obesity. Int J Obes Relat Metab Disord. 1997; 21(9): 796-801.
9. Barstow TJ. Characterization of VO2 kinetics during heavy exercise. Med Sci Sports Exerc. 1994; 26(11): 1327-1334.
10. Montero JC, Cúneo A, Facchini M, Bressan J. Comprehensive treatment of obesity and its prevention. An Sist Sanit Navar. 2002; 25(1): 175-186.
11. Gómez S, Marcos A. A comprehensive approach to treating adolescent obesity. Rev Med Univ Navarra. 2006; 50(4): 23-25.
12. Corte de Araujo AC, Roschel H, Picanço AR, do Prado DM, Villares SM, de Sá Pinto AL, et al. Similar health benefits of endurance and highintensity interval training in obese children. PLoS One. 2012; 7(8): e42747.
13. Duarte C, de Castro C, de Araujo C. Treinamento para disfunção vagal cardíaca com repetições da transição repouso-exercício. Rev Bras Ativ Fis Saúde. 2013; 18(6): 688-967.
14. Bell C, Paterson DH, Kowalchuk JM, Padilla J, Cunningham DA. Comparison of modelling techniques used to characterise oxygen Uptake kinetics During the on- transient of exercise. Exp Physiol. 2001; 86(5): 667-676.
15. Vivier, L. Évaluation de la contribution du système aérobie lors d’une épreuve de 1500 m en curse à pied. 2005. 122.
16. Hughson RL. Oxygen uptake kinetics: historical perspective and future directions. Appl Physiol Nutr Metab. 2009; 34(5): 840-850.
17. Lupton H, Hill A. An analysis of the effects of speed on the mechanical efficiency of human muscular movement. J Physiol. 1923; 57(6): 337-353.
18. Hill A, Long C, Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Proceedings of the Royal Society of London. Series B, containing papers of a biological character. 1924; 97(681): 84-138.
19. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc. 1984; 16(1): 29-43.
20. McArdle W, Katch V, Katch F; Schofield D. Fisiología del ejercicio: energía, nutrición y rendimiento humano. 1a edición. Madrid: Alianza: Consejo Superior de Deportes, 1995; 2: 119-136.
21. Stupnicki R, Gabryś T, Szmatlan-Gabryś U, Tomaszewski P. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake. Physiol Res. 2010; 59(3): 357-362.
22. Matsuura C, Meirelles C, Gomes P. Gasto energético e consumo de oxigênio pós-exercício contraresistência. Rev Nutr. 2006; 19(6): 729-740.
23. Neto A, Farinatti P. Consumo de oxigênio após exercício resistido: uma abordagem crítica sobre os fatores determinantes de sua magnitude e duração. Braz. J Biomotricity. 2009; 3(2): 96-110.
24. Junior N. Matemática da cinética do VO2 e da contribuição do sistema de energia durante o exercício: um estudo de revisão. Rev Brasil Prescrição Fisiol Exercício. 2012; 6(36): 578-603.
25. Álvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002; 106 (20): 2533-2536.
26. Espinoza A, Acuña S, Sánchez P, Zafra E. Revisión bibliográfica: Efectos del entrenamiento interválico de alta intensidad en el balance autonómico y la cinética del consumo de oxígeno en sujetos obesos. Rev Horiz Cienc Act Fís. 2016; (7): 30-45.
27. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low -volume, high intensity interval training in health and disease. J Physiol. 2012; 590: 1077-1084. DOI: 10.1113/jphysiol.2011.224725.
28. Álvarez LC, Ramírez-Campillo R, Flores OM, Henríquez-Olguín C, Campos JC, Carrasco V, et al. Respuestas metabólicas inducidas por ejercicio físico de alta intensidad en mujeres sedentarias con glicemia basal alterada e hipercolesterolemia. Rev Méd Chile. 2013; 141(10): 1293-1299.
29. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, highintensity interval training in health and disease. J Physiol. 2012; 590(5): 1077-1084.
30. Hernández R, Fernández C, Baptista P. Metodología de la investigación. 5ta edición. México: McGraw-Hill Interamericana, 2010.
31. Jones A, Poole D. Oxygen Uptake kinetics in sport, exercise and medicine. J Sports Sci Med. 2005; 4(1): 84.
32. Rosso S. La Cinética del Consumo de Oxígeno. Eur J Appl Physiol. 2013; (72): 37-43.
33. Forman DE, Myers J, Lavie CJ, Guazzi M, Celli B, Arena R. Cardiopulmonary exercise testing: relevant but underused. Postgrad Med. 2010; 122(6): 68-86.
34. Salvadego D, Lazzer S, Busti C, Galli R, Agosti F, Lafortuna C, et al. Gas exchange kinetics in obese adolescents. Inferences on exercise tolerance and prescription. Am J Physiol Regul Integr Comp Physiol. 2010; 299(5): R1298-1305.
35. Paterson DH, Whipp BJ. Asymmetries of oxygen uptake transients at the on-and offset of heavy exercise in humans. J Physiol. 1991; 443: 575-586.
36. Padilla-Pérez, J. The on- and off-transient phase two VO2 kinetics during submaximal exercise in young men. Rev Hosp Jua Mex 2013; 80 (1): 6-13.
37. Barstow TJ, Molé PA. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol. 1991; 71(6): 2099-2106.
38. Özyener F, Rossiter HB, Ward SA, Whipp BJ. Influence of exercise intensity on the on- and offtransient kinetics of pulmonary oxygen uptake in humans. J Physiol. 2001; 533(Pt 3): 891-902.
39. Engelen M, Porszasz J, Riley M, Wasserman K, Maehara K, Barstow TJ. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J Appl Physiol. 1996; 81(6): 2500-2508.
40. Marwood S, Roche D, Garrard M, Unnithan VB. Pulmonary oxygen uptake and muscle deoxygenation kinetics during recovery in trained and untrained male adolescents. Eur J Appl Physiol. 2011; 111(11): 2775-2784.
41. Fukuoka Y, Grassi B, Conti M, Guiducci D, Sutti M, Marconi C, et al. Early effects of exercise training on on-and off-kinetics in 50-year-old subjects. Pflugers Arch. 2002; 443(5-6): 690-697.
42. Billat VL, Mille-Hamard L, Demarle A, Koralsztein JP. Effect of training in humans on off-and ontransient oxygen uptake kinetics after severe exhausting intensity runs. Eur J Appl Physiol. 2002; 87(6): 496-505.
43. Sousa A, Rodríguez FA, Machado L, Vilas-Boas JP, Fernandes RJ. Exercise modality effect on oxygen uptake off- transient kinetics at maximal oxygen uptake intensity. Exp Physiol. 2015; 100(6): 719-729.
44. López-Chicharro J, Fernández-Vaquero A. Fisiología del Ejercicio. 3era edición. Madrid: Ed. Médica Panamericana. 2006.
45. Hernández-Jiménez, S. Fisiopatología de la obesidad. Gac Méd Méx. 2004; 140(2): 27-32.
46. Heath, Edward M. Exercise Physiology: Energy, Nutrition, and Human Performance. Medicine & Science in Sports & Exercise. 2002; 34: 903.
47. Boyd JC, Simpson CA, Jung ME, Gurd BJ. Reducing the intensity and volume of interval training diminishes cardiovascular adaptation but not mitochondrial biogenesis in overweight/obese men. PLoS One. 2013; 8(7): e68091.
48. McNarry MA, Lambrick D, Westrupp N, Faulkner J. The influence of a six-week, high-intensity games intervention on the pulmonary oxygen uptake kinetics in prepubertal obese and normal-weight children. Appl Physiol Nutr Metab. 2015; 40(10): 1012-1018.
49. Salassi J. The acute effects of various highintensity interval training (HIIT) protocols on cardiopulmonary and metabolic function. California State University, Long Beach. ProQuest Dissertations Publishing, 2014.
50. Liang H1, Ward WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006; 30(4): 145-151.
Se autoriza la reproducción total o parcial de la obra para fines educativos, siempre y cuando se cite la fuente.
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Pública Internacional.