Abstract
Introduction and objectives: The subcutaneous adipose tissue is considered as a depot with a protective role from a metabolic point of view. An excess of adipose tissue is triggered in obesity, which is accompanied by insulin resistance, dyslipidemia and arterial hypertension. However, it is known that, there is a subgroup of obese people who seem to be protected from obese complications. These individuals are defined as metabolically healthy obese. Despite the advances in the knowledge of the alterations that occur in adipose tissue during obesity, the mechanisms underlying the development of insulin resistance are still unknown. Therefore, in this work, we studied the association between obesity and the development of metabolic disease, we identified factors and processes that determined the transition of healthy and unhealthy obesity phenotype, using preadipocytes from subcutaneous adipose tissue. Methods: Data obtained from a comparative proteomics study of subcutaneous adipose tissue preadipocytes from normoglycemic obese patients-not resistant to insulin and from obese patients with type 2 diabetes mellitus were used. The proteomic study was carried out using the iTRAQ combined with LC -MSMS. Results and conclusions: The differences between pre-adipocytes of subcutaneous adipose tissue in normoglycemic subjects and with diabetes affect mainly cytosolic proteins and, in particular, proteins related to metabolic processes while, membrane proteins do not change between obese phenotypes. In this study, we identified significant differences in the proteomic profile of preadipocytes from subcutaneous adipose tissue in obesity in both, normoglycemic and diabetic subjects, supporting the importance of these cells in the maintenance of the fat depot identity. We also found that, the transition from unhealthy to healthy phenotype in obesity, leads to further development of oxidative stress and inflammation in adipocyte precursor cells.
References
2. Anaizi N. Fat facts: An overview of adipose tissue and lipids. Ibnosina J Med Biomed Sci. 2019; 11(1): 5-15.
3. Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol 2018; 221. (Pt Suppl 1). doi: 10.1242/jeb.162958.
4. Vohl M-C, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D, et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res. 2004; 12(8): 1217-1222. doi: 10.1038/oby.2004.153.
5. Ekpenyong CE. Relationship between Insulin Resistance and Metabolic Syndrome Clusters: Current Knowledge. Acta Sci Med Sceinces. 2019; 3(3): 99-104.
6. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008; 453(7196): 783-787. doi: 10.1038/nature06902.
7. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006; 7(12): 885-896. doi: 10.1038/nrm2066.
8. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006; 2(4): 367-373.
9. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome — An allostatic perspective. Biochim Biophys Acta. 2010; 1801(3): 338-349. doi: 10.1016/j. bbalip.2009.12.006.
10. Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010; 314(1): 1-16. doi: 10.1016/j.mce.2009.07.031.
11. Xu XJ, Pories WJ, Dohm LG, Ruderman NB. What distinguishes adipose tissue of severely obese humans who are insulin sensitive and resistant? Curr Opin Lipidol. 2013; 24(1) : 49-56. doi: 10.1097/ MOL.0b013e32835b465b.
12. Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie M-E, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2011; 35(7): 971-981. doi: 10.1038/ijo.2010.216.
13. Samocha-Bonet D, Chisholm DJ, Tonks K, Campbell LV, Greenfield JR. Insulin-sensitive obesity in humans – a ‘favorable fat’ phenotype? Trends Endocrinol Metab. 2012; 23(3): 116-124. doi: 10.1016/j.tem.2011.12.005.
14. Rodríguez A, Gómez-Ambrosi J, Catalán V, Rotellar F, Valentí V, Silva C, et al. The ghrelin O-acyltransferase–ghrelin system reduces TNF-α- induced apoptosis and autophagy in human visceral adipocytes. Diabetologia. 2012; 55(11): 3038-3050. doi: 10.1007/s00125-012-2671-5.
15. Moreno-Castellanos N, Rodríguez A, Rabanal- Ruiz Y, Fernández-Vega A, López-Miranda J, Vázquez-Martínez R, et al. The cytoskeletal protein septin 11 is associated with human obesity and is involved in adipocyte lipid storage and metabolism. Diabetologia. 2017; 60(2): 324-335. doi: 10.1007/ s00125-016-4155-5.
16. Ye F, Zhang H, Yang Y-X, Hu H-D, Sze SK, Meng W, et al. Comparative proteome analysis of 3T3-L1 adipocyte differentiation using iTRAQ-coupled 2D LC-MS/MS. J Cell Biochem. 2011; 112(10): 3002- 3014. doi: 10.1002/jcb.23223.
17. Gómez-Serrano M, Camafeita E, López A, Rubio M, Bretón I, et al. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol. 2017; 11: 415-428. doi: 10.1016/j.redox.2016.12.013.
18. Ojima K, Oe M, Nakajima I, Muroya S, Nishimura, T. Dynamics of protein secretion during adipocyte differentiation. FEBS Open Bio. 2016; 6: 816-826. doi: 10.1002/2211-5463.12091.
19. Lee H-K, Lee B-H, Park S-A, Kim C-W. The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics. 2006; 6(4): 1223-1229. doi: 10.1002/ pmic.200500385.
20. Jeong JA, Ko K-M, Park HS, Lee J, Jang C, Jeon C-J, et al. Membrane proteomic analysis of human mesenchymal stromal cells during adipogenesis. Proteomics. 2007; 7(22): 4181-4191. doi: 10.1002/ pmic.200700502.
21. Renes J, Mariman E. Application of proteomics technology in adipocyte biology. Mol Biosyst. 2013; 9(6): 1076. doi: 10.1039/c3mb25596d.
22. Lee M-J, Wu Y, Fried SK. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013; 34(1): 1-11. doi: 10.1016/j. mam.2012.10.001.
23. Peinado JR, Jimenez-Gomez Y, Pulido MR, Ortega-Bellido M, Diaz-Lopez C, Padillo FJ, et al. The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots. Proteomics. 2010; 10(18): 3356-3366. doi: 10.1002/ pmic.201000350.
24. Moreno-Castellanos N, Guzmán-Ruiz R, Cano DA, Madrazo-Atutxa A, Peinado JR, Pereira- Cunill JL, et al. The effects of bariatric surgery-induced weight loss on adipose tissue in morbidly obese women depends on the initial metabolic status. Obes Surg. 2016; 26(8): 1757-1767. doi: 10.1007/s11695-015-1995-x.
25. Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 Translocation in Adipocytes Is Dependent upon Cortical Actin Remodeling. J Biol Chem. 2001; 276(45): 42436-42444. doi: 10.1074/jbc. M108297200.
26. Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med. 2013; 62: 4-12. doi: 10.1016/j. freeradbiomed.2013.05.027.
27. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114(12): 1752-1761. doi: 10.1172/JCI21625.
28. Barbarroja N, López-Pedrera R, Mayas MD, García- Fuentes E, Garrido-Sánchez L, Macías-González M, et al. The obese healthy paradox: is inflammation the answer? Biochem J. 2010; 430(1): 141-149. doi: 10.1042/BJ20100285.
29. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005; 115(5): 1111- 1119. doi: 10.1172/JCI25102.
Se autoriza la reproducción total o parcial de la obra para fines educativos, siempre y cuando se cite la fuente.
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Pública Internacional.