Resumo
Introdução: Alguns estudos encontraram relação entre excesso de peso e baixa força de preensão relativa. Em países de rendimentos socioeconômicos médios e baixos há poucas evidências que avaliem a força prensil e sua relação com a composição corporal em população pediátrica. Objetivo: avaliar a correlação entre a força prensil e a composição corporal de escolares de Bucaramanga, Colômbia. Materiais e Métodos: Foi realizado um estudo piloto de corte transversal, analítico, correlacional. Participaram crianças em idade escolar de Bucaramanga, Colômbia. As principais variáveis dependentes foram massa muscular, água corporal total, proteínas (kg) e porcentagem de gordura corporal. A variável independente correspondeu à força pré-sil. O coeficiente de correlação de Spearman foi usado para explorar a relação entre variáveis. Resultados: a média da força prensil no total da amostra foi de 13,8 3,2 Newton. Foram encontradas correlações positivas e estatisticamente significativas entre a força pré-sil e a massa musculoesquelética (r = 0,73), água corporal total (r = 0,73) e proteínas (r = 0,74). Discussão: Nossos resultados são consistentes com evidências prévias que identificam a força prensil como um indicador da composição corporal, especificamente nas variáveis de massa musculoesquelética e proteínas. Conclusão: as crianças no tercil mais alto de força pré-sil apresentam os mais altos tercis de massa musculoesquelética, água corporal total e proteínas.
Referências
Bobos P, Nazari G, Lu Z, MacDermid JC. Measurement properties of the hand grip strength assessment: A systematic review with meta-analysis. Arch Phys Med Rehabil. 2020; 101(3): 553-565. doi: 10.1016/j.apmr.2019.10.183.
Schefold JC, Wollersheim T, Grunow JJ, Luedi MM, Z’Graggen WJ, Weber-Carstens S. Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle. 2020; 11(6): 1399-1412. doi: 10.1002/jcsm.12620
Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and metaanalysis. Ageing Res Rev. 2020; 64:101185. doi: 10.1016/j.arr.2020.101185
Smith S, Madden AM. Body composition and functional assessment of nutritional status in adults: a narrative review of imaging, impedance, strength and functional techniques. J Hum Nutr Diet. 2016; 29(6): 714-732. doi: 10.1111/jhn.12372.
Wu R, Delahunt E, Ditroilo M, Lowery M, De Vito G. Effects of age and sex on neuromuscularmechanical determinants of muscle strength. Age (Dordr). 2016;38(3):57. doi: 10.1007/s11357-016-9921-2
Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR, et al. Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab. 2002; 282: E1191e6. doi: 10.1152/ajpendo.00416.2001
Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord. 2001; 25:676e81. doi: 10.1038/sj.ijo.0801560
Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016; 17(3): 467-483. doi: 10.1007/s10522-015-9626-4
Thivel D, Ring-Dimitriou S, Weghuber D, Frelut European Childhood Obesity Group. Obes Facts. 2016;9(1):52-63. doi: 10.1159/000443687
Cossio-Bolaños M, Gómez-Campos R, Castelli Correia de Campos LF, Sulla-Torres J, Urra-Albornoz C, Pires Lopes V. Muscle strength and body fat percentage in children and adolescents from the Maule region, Chile. Arch Argent Pediatr. 2020; 118(5): 320-326. doi: 10.5546/aap.2020.eng.320
Palacio-Agüero A, Díaz-Torrente X, Quintiliano Scarpelli Dourado D. Relative handgrip strength, nutritional status and abdominal obesity in Chilean adolescents. PLoS One. 2020; 15(6): e0234316. doi: 10.1371/journal.pone.0234316
Cohen DD, Gómez-Arbeláez D, Camacho PA, Pinzon S, Hormiga C, Trejos-Suarez J, et al. Low muscle strength is associated with metabolic risk factors in Colombian children: the ACFIES study. PLoS One. 2014; 9(4): e93150. doi: 10.1371/journal.pone.0093150
Sothern MS, Loftin M, Suskind RM. Udall JN, Blecker U. The health benefits of physical activity in children and adolescents: Implications for chronic disease prevention. Eur J Pediatr. 1999; 158(4): 271-274. doi: 10.1007/s004310051070
Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010; 169(3):281- 287. doi: 10.1007/s00431-009-1010-4
Castro-Piñero J, Ortega FB, Artero E, Girela-Rejón MJ, Mora J, Sjöström M, et al. Assessing muscular strength in youth: Usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res. 2010; 24(7): 810-817. doi: 10.1519/JSC.0b013e3181ddb03d
Redfield R, Schuchat A, Dauphin L. Youth Risk Behavior Surveillance, Morbidity and Mortality Weekly Report. United States; 2017. (Morbidity and Mortality Weekly Report). Cent Dis Control Prev. 2018; 67(8): 1-114. Disponible en: https://www.cdc.gov/mmwr/volumes/67/ss/ss6708a1.htm
Matsudo VK, Matsudo SM, Machado de Rezende LF, Raso W. Handgrip strength as a predictor of physical fitness in children and adolescents. Rev Bras Cineantropom Desempenho Hum. 2015, 17(1): 1-10.
Sociedad Internacional para el Avance de la Cineantropometría ISAK. Normas Internacionales para la Valoración Antropométrica. 2001. Librería Nacional de Australia. ISBN 0 86803 712 5.
Reisberg K, Riso EM, Jürimäe J (2021) Physical fitness in preschool children in relation to later body composition at first grade in school. PLoS One. 2021; 16(1): e0244603. https://doi.org/10.1371/journal.pone.0244603
Makgae PJ, Monyeki KD, Brits SJ, Kemper HC, Mashita J. Somatotype and blood pressure of rural South African children aged 6-13 years: Ellisras longitudinal growth and health study. Ann Hum Biol. 2007;34(2):240-51. doi: 10.1080/03014460601144219
Monyeki KD, Toriola AL, de Ridder JH, Kemper HC, Steyn NP, Nthangeni ME, et al. Stability of somatotypes in 4 to 10 year-old rural South African girls. Ann Hum Biol. 2002; 29(1): 37-49. doi: 10.1080/03014460110054984.
Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev. 2013; 14(11): 895-905. doi: 10.1111/obr.12061
Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30(2):135-42. doi: 10.1016/j.clnu.2010.09.010
Gerber M, Ayekoé S, Bonfoh B, Coulibaly J, Daouda D,Gba B, et al. Is grip strength linked to body composition and cardiovascular risk markers in primary schoolchildren? Crosssectional data from three African countries. BMJ Open. 2022; 12(6): e052326. doi: 10.1136/bmjopen-2021-052326.
Lu Y, Li G, Ferrari P, Freisling H, Qiao Y, Wu L, Shao L, Ke C. Associations of handgrip strength with morbidity and all-cause mortality of cardiometabolic multimorbidity. BMC Med. 2022;20(1):191. doi:10.1186/s12916-022-02389-y
Hyde N, Duckham R, Wark J, Brennan-Olsen S, Hosking S, Holloway-Kew K, et al. The Association between muscle mass and strength in relation to bone measures in a paediatric population: Sex-specific effects. Calcif Tissue Int. 2020; 107:121-125. doi: 10.1007/s00223-020-00699-y
Ruiz JR, Castro-Pinero J, Espana-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based ML, O’Malley G. Muscle strength and fitness in pediatric obesity: A systematic review from the fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011; 45: 518–524. doi: 10.1136/bjsm.2010.075341
Cadenas-Sanchez C, Sanchez-Delgado G, Martinez-Tellez B, Mora-Gonzalez J, Löf M, España-Romero V, et al. Reliability and Validity of Different Models of TKK Hand Dynamometers. Am J Occup Ther. 2016;70(4):7004300010. doi: 10.5014/ajot.2016.019117
Larsen N, Krustrup P, Araújo SC, Castagna C. Accuracy and reliability of the InBody 270 multifrequency body composition analyser in 10-12-yearold children. PLoS One. 2021; 16(3): e0247362. doi: 10.1371/journal.pone.0247362
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Gloria Isabel Niño-Cruz, Elizabeth Herrera-Anaya, Edna Magaly Gamboa-Delgado