Contaminación bacteriana y fúngica del aire interior y su relación con el síndrome del edificio enfermo
PDF (Español (España))

Palavras-chave

Bacterias
Hongos
Contaminación del aire interior
Síndrome del edificio enfermo
Humedad
Aerosol

Como Citar

Ávila-Durán, L. Y., Blanco-Flórez, E. J., & Lizarazo-Forero, L. M. (2024). Contaminación bacteriana y fúngica del aire interior y su relación con el síndrome del edificio enfermo. Salud UIS, 56. https://doi.org/10.18273/saluduis.56.e:24028

Resumo

Introducción: el síndrome del edificio enfermo se ha asociado con la ocupación de edificios de oficinas. Las causas del syndrome son factores que actúan en combinación, destacándose la microbiota que se propaga por el aire u otros elementos, o por las personas a varias áreas del edificio. Objetivo: determinar la composición fúngica y bacteriana y su relación con parámetros ambientales de temperatura y humedad relativa, y sintomatología asociada al síndrome del edificio enfermo. Metodología: se tomaron muestras en la oficina de almacén e inventario, espacio subdividido en seis sectores de aproximadamente 8,6 m2 cada uno. Se empleó un impactador de aire para la estimación cuantitativa de bacterias y hongos y se registraron datos de temperatura y humedad relativa. Se realizaron cuatro muestreos semanales, con 144 muestras en total. Se encuestó a los funcionarios sobre síntomas asociados al síndrome del edificio enfermo. Resultados: las concentraciones microbianas estuvieron dentro de los límites recomendados para ambientes interiores. Se halló una mayor concentración bacteriana (x̄ = 54,39 ± 54,51 UFC / m3) con ocho especies, las más frecuentes fueron Pseudomonas aeruginosa, Bacillus cereus y Staphylococcus aureus. Los hongos presentaron menor abundancia, pero mayor diversidad, con 23 géneros, entre los que sobresalen Cladosporium sp., Penicillium sp., y Rhizopus sp. Se estableció relación entre la exposición al aerosol microbiano, ocupación y los parámetros ambientales registrados. Conclusiones: la combinación de datos de carga microbiana en interiores con los efectos sobre la salud causados por la inhalación de microorganismos específicos en aerosoles, permitirá evaluar diversos riesgos de salud para los trabajadores.

 

 

 

 

https://doi.org/10.18273/saluduis.56.e:24028
PDF (Español (España))

Referências

Shammi M, Rahman MM, Tareq SM. Distribution of bioaerosols in association with particulate matter: A review on emerging public health threat in Asian megacities. Front Environ Sci. 2021; 9: 698215. doi: https://doi.org/10.3389/fenvs.2021.698215

Kim K, Kabir E, Jahan S. Airborne bioaerosols and their impact on human health. J Environ Sci (China). 2018; 67: 23-35. doi: https://doi.org/:10.1016/j.jes.2017.08.027

Heo KJ, Lim CE, Kim HB, Lee BU. Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. J Aerosol Sci. 2017; 104: 58-65. doi: https://doi.org/10.1016/j.jaerosci.2016.11.008

Wang S, Qian H, Sun Z, Cao G, Ding P, Zheng X. Comparison of airborne bacteria and fungi in different built environments in selected cities in five climate zones of China. Sci Total Environ. 2023; 860: 160445. doi: https://doi.org/10.1016/j.scitotenv.2022.160445

Hou P, Zu K, Qin M, Cui S. A novel metal-organic frameworks based humidity pump for indoor moisture control. Build Environ. 2021; 187: 107396. doi: https://doi.org/10.1016/j.buildenv.2020.107396

Adams RI, Bhangar S, Pasut W, Arens EA, Taylor JW, Lindow SE, et al. Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes. PLoS One 2015; 10(5): e0128022-e0128022. doi: https://doi.org/:10.1371/journal.pone.0128022

Licina D, Nazaroff WW. Clothing as a transport vector for airborne particles: Chamber study. Indoor Air 2018; 28(3): 404-414. doi: https://doi.org/:10.1111/ina.12452

Guo K, Qian H, Ye J, Sun F, Zhuge Y, Wang S, et al. Assessment of airborne bacteria and fungi in different-type buildings in Nanjing, a hot summer and cold winter moist Chinese city. Build Environ. 2021; 205: 108258. doi: https://doi.org/10.1016/j.buildenv.2021.108258

Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, et al. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi’an, China. Sci Total Environ. 2019; 672: 834-845. doi: https://doi.org/10.1016/j.scitotenv.2019.03.412

Franchitti E, Caredda C, Anedda E, Traversi D. Urban aerobiome and effects on human health: a systematic review and missing evidence. J Atmos. 2022; 13(7): 1148. doi: https://doi.org/:10.3390/atmos13071148

Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW. Airborne bacterial species in indoor air and association with physical factors. UCL open Environ. 2023; 5: e056. doi: https://doi.org/10.14324/111.444/ucloe.000056

Li X, Qiu Y, Yu A, Shi W, Chen G, Zhang Z, et al. Characteristics of airborne Staphylococcus aureus (including MRSA) in Chinese public buildings. Aerobiologia. 2015; 31(1): 11-19. doi: https://doi.org/10.1007/s10453-014-9342-6

Sharpe RA, Bearman N, Thornton CR, Husk K, Osborne NJ. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol. 2015; 135(1): 110-122. doi: https://doi.org/10.1016/j.jaci.2014.07.002

Baxi SN, Portnoy JM, Larenas-Linnemann D, Phipatanakul W. Exposure and health effects of fungi on humans. J Allergy Clin Immunol Pract. 2016; 4(3): 396-404. doi: https://doi.org/10.1016/j.jaip.2016.01.008

Pyrri I, Tripyla E, Zalachori A, Chrysopoulou M, Parmakelis A, Kapsanaki-Gotsi E. Fungal contaminants of indoor air in the National Library of Greece. Aerobiologia. 2020; 36(3): 387-400. doi: https://doi.org/10.1007/s10453-020-09640-0

Onmek N, Kongcharoen J, Singtong A, Penjumrus A, Junnoo S. Environmental factors and ventilation affect concentrations of microorganisms in hospital wards of Southern Thailand. J Environ Public Health. 2020; 2020: 7292198. doi: https://doi.org/10.1155/2020/7292198

Qiu Y, Zhou Y, Chang Y, Liang X, Zhang H, Lin X, et al. The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. Int J Environ Res Public Health. 2022; 19(22): 15345. doi: https://doi.org/10.3390/ijerph192215345

Burge PS. Sick building syndrome. Occup Environ Med. 2004; 61(2): 185–190. doi: 10.1136/oem.2003.008813.

Yussuf SM, Dahir G, Salad AM, Hayir TMM, Hassan SA, Gele A. Sick building syndrome and its associated factors among adult people living in Hodan district Moqadishu Somalia. Front Built Environ. 2023; 9. doi: https://doi.org/10.3389/fbuil.2023.1218659

Aziz N, Adman MA, Suhaimi NS, Misbari S, Alias AR, Aziz AA, et al. Indoor air quality (IAQ) and related risk factors for sick building syndrome (SBS) at the office and home: a systematic review. IOP Conf Ser: Earth Environ Sci. 2023; 1140(1): 012007. doi: https://doi.org/10.1088/1755-1315/1140/1/012007

Feller W. An introduction to the probability theory and its application. New York: John Wiley and sons Inc; 1950. p. 175.

Simpson EH. Measurement of diversity. Nature. 1949; 163(4148): 688. doi: https://doi.org/10.1038/163688a0

Górny R, Dutkiewicz J, Krysińska-Traczyk E. Size distribution of bacterial and fungal bioaerosols in indoor air. Ann Agric Environ Med. 1999; 6(2): 105-113.

Carrazana E, Ruiz-Gil T, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, et al. Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards. Sci Total Environ. 2023; 901: 165879. doi: https://doi.org/10.1016/j.scitotenv.2023.165879

Kumar P, Kausar MA, Singh AB, Singh R. Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health. 2021; 14(11): 1723-1736. doi: https://doi.org/10.1007/s11869-021-00978-z

Abdel-Aziz RA, Samir R. Impact of traffic densities on indoor air quality. World J Adv Res Rev. 2019; 1: 66-72. doi: https://doi.org/10.30574/wjarr.2019.1.3.0027

Salunkhe AR, Dudhwadkar S, Raju NP, Tandon S. Public health risk assessment and speciation of air-borne microorganisms in an office building. J Aerosol Sci. 2024: 106362. doi: https://doi.org/10.1016/j.jaerosci.2024.106362

Mui KW, Chan WY, Wong LT, Hui PS. Scoping indoor airborne fungi in an excellent indoor air quality office building in Hong Kong. Build Serv Eng Res T Journal. 2010; 31(2): 191-199. doi: https://doi.org/10.1177/0143624409359752

Alli Abosede S, Ana Godson Rowland EE. Indoor and outdoor concentrations of bioaerosols and meteorological conditions of selected salons in four areas of Ibadan North Local Government area. Environ Monit Ana. 2017; 5(3): 83-90. doi: https://doi.org/10.11648/j.ijema.20170503.13

Lee H, Lee BG, Kim YJ, Shim JE, Yeo M-K. Assessment of airborne bacteria in the indoor of public-use facilities concentrated on influencing factors and opportunistic pathogenic bacteria. Air Qual Atmos Health. 2024. doi: https://doi.org/10.1007/s11869-024-01540-3

Nikiyan H, Vasilchenko A, Deryabin D. Humiditydependent bacterial cells functional morphometry investigations using atomic force microscope. Int. J. Microbiol. 2010; 2010: 704170. doi: https://doi.org/10.1155/2010/704170

Brągoszewska E, Biedroń I, Kozielska B, Pastuszka JS. Microbiological indoor air quality in an office building in Gliwice, Poland: analysis of the case study. Air Qual Atmos Health. 2018; 11(6): 729-740. doi: https://doi.org/10.1007/s11869-018-0579-z

Layshock JA, Pearson B, Crockett K, Brown MJ, Van Cuyk S, Daniel WB, et al. Reaerosolization of Bacillus spp. in outdoor environments: a review of the experimental literature. Biosecurity and bioterrorism: biodefense strategy, practice, and science. Biosecur Bioterror. 2012; 10(3): 299-303. doi: https://doi.org/10.1089/bsp.2012.0026

Almatawah QA, Al-Rashidi MS, Yassin MF, Varghese JS. Microbiological contamination of indoor and outdoor environments in a desert climate. Environ Monit Assess. 2022; 194(5): 355. doi: https://doi.org/10.1007/s10661-022-10032-9

Botzenhart K, Döring G. Ecology and epidemiologyof pseudomonas aeruginosa. In: Campa M, Bendinelli M, Friedman H, editors. Pseudomonas aeruginosa as an Opportunistic Pathogen. Boston, MA: Springer US; 1993. p. 1-18. doi: https://doi.org/10.1007/978-1-4615-3036-7_1

White JK, Nielsen JL, Larsen CM, Madsen AM. Impact of dust on airborne Staphylococcus aureus’ viability, culturability, inflammogenicity, and biofilm forming capacity. Int J Hyg Environ Health. 2020; 230: 113608. doi: https://doi.org/10.1016/j.ijheh.2020.113608

Kozajda A, Jeżak K, Kapsa A. Airborne Staphylococcus aureus in different environments-a review. Environ Sci Pollut Res Int. 2019; 26(34): 34741-34753. doi: https://doi.org/10.1007/s11356-019-06557-1

Haleem Khan AA, Mohan Karuppayil S. Fungal pollution of indoor environments and its management. Saudi J Biol Sci. 2012; 19(4): 405-426. doi: https://doi.org/10.1016/j.sjbs.2012.06.002

Fashola MO, Ajilogba CF, Aremu BR, Babalola OO. Capítulo 7 - Airborne fungi and mycotoxins. En: Ilori MO, Obayori OS, Salam LB, editors. Aeromicrobiology: Academic Press; 2023. p. 147-75. doi: https://doi.org/10.1016/B978-0-323-96122-6.00007-4

Fujiyoshi S, Tanaka D, Maruyama F. Transmission of airborne bacteria across built environments and its measurement standards: a review. Front Microbiol. 2017; 8: 2336. doi: https://doi.org/10.3389/fmicb.2017.02336

Bolashikov ZD, Melikov AK. Methods for air cleaning and protection of building occupants from airborne pathogens. Build Environ. 2009; 44(7): 1378-1385. doi: https://doi.org/10.1016/j.buildenv.2008.09.001

Wolkoff P, Azuma K, Carrer P. Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. Int J Hyg Environ Health. 2021; 233: 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Laura Yinneth Ávila-Durán, Erika Julieth Blanco-Flórez, Luz Marina Lizarazo-Forero

Downloads

Não há dados estatísticos.