Vol. 21 No. 2 (2022): Revista UIS Ingenierías
Articles

Design of a solar tree for the Bajo Cauca Headquarters of University of Antioquia

Juan Pablo Castaño-Serna
Universidad de Antioquia
Valentina Bolaños-Ibáñez
Universidad de Antioquia
Luis Miguel Garnica-Zuñiga
Universidad de Antioquia
Leidy Bibiana De La Ossa-Villadiego
Universidad de Antioquia
Sergio Agudelo-Flórez
Universidad de Antioquia
Edwin Lenin Chica-Arrieta
Universidad de Antioquia

Published 2022-03-30

Keywords

  • solar energy,
  • solar tree,
  • peak solar hours,
  • solar tree structure,
  • design of photovoltaic systems

How to Cite

Castaño-Serna, J. P., Bolaños-Ibáñez , V. ., Garnica-Zuñiga , L. M., De La Ossa-Villadiego, L. B., Agudelo-Flórez , S. ., & Chica-Arrieta, E. L. (2022). Design of a solar tree for the Bajo Cauca Headquarters of University of Antioquia. Revista UIS Ingenierías, 21(2), 71–86. https://doi.org/10.18273/revuin.v21n2-2022007

Abstract

The conceptual and detailed design of a metal structure resembling a real tree with branches, in whose upper part photovoltaic solar panels are located, is presented in this work. The energy generated will be used to charge batteries for mobile phones, tablets and laptops belonging to the university community in Bajo Cauca headquarter of Universidad de Antioquia, located at a latitude of 7.990584° and a longitude of -75.193100°. For the design of the tree, an estimation of the solar resource in the headquarter was initially conducted; it was established that the annual average of peak solar hours was equivalent to 18.74 MJ/m2. Based on a daily energy requirement of 1400 Wh/day, the number of 180 Wp panels to be installed was determined to be 2. The tree structure was numerically analyzed using a finite element software in order to determine the stresses and deformations due to external loads and its own weight to guarantee its structural integrity. The featured design is a portable structure that can produce green energy and provide a meeting place at the Bajo Cauca headquarter.

Downloads

Download data is not yet available.

References

  1. J. Ajayan, D. Nirmal, P. Mohankumar, M. Saravanan, M. Jagadesh, L Arivazhagan, “A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies”, Superlattices and Microstructures, 106549, 2020, doi: https://doi.org/10.1016/j.spmi.2020.106549
  2. l. Hernández-Callejo, S. Gallardo-Saavedra, V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance”, Solar Energy, vol. 188, pp. 426-440, 2019, doi: https://doi.org/10.1016/j.solener.2019.06.017
  3. B.N. Stram, “Key challenges to expanding renewable energy”, Energy Policy, vol. 96, pp. 728-734, 2016, doi: https://doi.org/10.1016/j.enpol.2016.05.034
  4. P. A. Owusu, S. Asumadu-Sarkodie, “A review of renewable energy sources, sustainability issues and climate change mitigation”, Cogent Engineering, vol. 3, no. 1, pp. 1167990, 2016, doi: https://doi.org/10.1080/23311916.2016.1167990
  5. N. Kannan, D.Vakeesan, “Solar energy for future world:-A review”, Renewable and Sustainable Energy Reviews, vol. 62, pp.1092-1105, 2016, doi: https://doi.org/10.1016/j.rser.2016.05.022
  6. F. Henao, I. Dyner, “Renewables in the optimal expansion of colombian power considering the Hidroituango crisis”, Renewable Energy, vol. 158, pp. pp. 612-627, 2020, doi: https://doi.org/10.1016/j.renene.2020.05.055
  7. O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of Colombia”, Data in Brief, vol. 28, 105084, 2020, doi: https://doi.org/10.1016/j.dib.2019.105084
  8. J. Arias-Gaviria, S. X. Carvajal-Quintero, S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia”, Renewable Energy, vol. 139, pp. 1111-1119, 2019, doi: https://doi.org/10.1016/j.renene.2019.02.138
  9. D. Rodríguez-Urrego, L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: current status, inventory, policies and future prospects”, Renewable and Sustainable Energy Reviews, vol. 92, pp. 160-170, 2018, doi: https://doi.org/10.1016/j.rser.2018.04.065
  10. T. Gómez-Navarro, D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 131-141, 2018, doi: https://doi.org/10.1016/j.rser.2018.03.015
  11. T. Schunder, D. Yin, S. Bagchi-Sen, K. Rajan, “A spatial analysis of the development potential of rooftop and community solar energy”, Remote Sensing Applications: Society and Environment, vol. 19, pp. 100355, 2020, https://doi.org/10.1016/j.rsase.2020.100355
  12. F. Hyder, P. Baredar, K. Sudhakar, R. Mamat, “Performance and land footprint analysis of a solar photovoltaic tree”, Journal of Cleaner Production, vol. 187, pp. 432-448, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.03.249
  13. S. Dey, B. Pesala, “Solar tree design framework for maximized power generation with minimized structural cost”, Renewable Energy, vol. 162, pp. 1747-1762, 2020, doi: https://doi.org/10.1016/j.renene.2020.07.035
  14. S. Dey, M. Lakshmanan, B. Pesala, “Optimal solar tree design for increased flexibility in seasonal energy extraction”, Renewable Energy, vol 125, pp. 1038-1048, 2018, doi: https://doi.org/10.1016/j.renene.2018.02.017
  15. F. Hyder, K. Sudhakar, R. Mamat, “Solar PV tree design: A review”, Renewable and Sustainable Energy Reviews, vol. 82, pp. 1079-1096, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.025
  16. Global Photovoltaic Power Potential by Country, Global Solar Atlas, 2020. [En línea]. Disponible en: https://globalsolaratlas.info/global-pv-potential-study
  17. S. A. Kalogirou, “Environmental Characteristics”, en Solar Energy Engineering. USA: Academic Press, 2013, pp. 49-762, doi: https://doi.org/10.1016/C2011-0-07038-2
  18. C. Stanciu, D. Stanciu, “Optimum tilt angle for flat plate collectors all over the World–A declination dependence formula and comparisons of three solar radiation models”, Energy Conversion and Management, vol. 81, pp. 133-143, 2014, doi: https://doi.org/10.1016/j.enconman.2014.02.016
  19. A. Rubio-Clemente, E. Chica, G. A. Penuela, “Photovoltaic array for powering advanced oxidation processes: Sizing, application and investment costs for the degradation of a mixture of anthracene and benzo [a] pyrene in natural water by the UV/H2O2 system”, Journal of Environmental Chemical Engineering, vol. 6, no. 2, pp. 2751-2761, 2018, doi: https://doi.org/10.1016/j.jece.2018.03.046
  20. A. Z. Hafez, A. Soliman, K. A. El-Metwally, I. M. Ismail, “Tilt and azimuth angles in solar energy applications–A review”, Renewable and Sustainable Energy Reviews, vol. 77, pp. 147-168, 2017, doi: https://doi.org/10.1016/j.rser.2017.03.131
  21. C. Nicolás-Martín, D. Santos-Martín, M. Chinchilla-Sánchez, S. Lemon, “A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data”, Renewable Energy, vol. 161, pp. 722-735, 2020, doi: https://doi.org/10.1016/j.renene.2020.07.098
  22. T. Khatib, A. Ibrahim, M Azah, “A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system”, Energy Conversion and Management, vol. 120, pp. 430-448, 2016, doi: https://doi.org/10.1016/j.enconman.2016.05.011
  23. Khan, Faizan A., Nitai Pal, and Syed H. Saeed, “Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies”, Renewable and Sustainable Energy Reviews, vol. 92, pp. 937-947, 2018, doi: https://doi.org/10.1016/j.rser.2018.04.107
  24. D. M. Patil, S. R. Madiwal, “Design and development of solar tree for domestic applications”, International Journal of Engineering Sciences & Research Technology, vol. 5, no. 8, pp. 102-111, 2016, doi: https://doi.org/10.5281/zenodo.59963
  25. P. G. Nikhil, D. Subhakar, “An improved algorithm for photovoltaic system sizing”, Energy Procedia, vol. 14, pp. 1134-1142, 2012, doi: https://doi.org/10.1016/j.egypro.2011.12.1066
  26. S. S. Awaze, K. N. Bhamburkar, A. P. Babare, A. R. Asode, S. P. Bargat, “Design and Fabrication of Solar Tree”, International Journal of Latest Engineering Research and Applications (IJLERA), vol. 03, no. 05, pp. 24-29, 2016.
  27. A. Awasthi, A. Kumar Shukla, M. Manohar S.R., C. Dondariya, K. N. Shukla, D. Porwal, G. Richhariya, “Review on sun tracking technology in solar PV system”, Energy Reports, vol. 6, pp. 392-405, 2020, doi: https://doi.org/10.1016/j.egyr.2020.02.004
  28. Y. E. Abu Eldahab, N. H. Saad, A. Zekry, “Enhancing the design of battery charging controllers for photovoltaic systems”, Renewable and Sustainable Energy Reviews, vol. 58, pp. 646-655, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.061
  29. S. Qazi, “Fundamentals of Standalone Photovoltaic Systems”, Standalone Photovoltaic (PV) Systems for Disaster Relief and Remote Areas. Editorial: Elsevier, pp. 31-82, 2017.
  30. S. Sirnivas, W. Musial, B. Bailey, M. Filippelli, “Assessment of offshore wind system design, safety, and operation standards”, National Renewable Energy Laboratory, United States, NREL/TP-5000-60573, 2014.
  31. S.l Roach, S. Myung Park, E.Gaertner, J. Manwell, M. Lackner, “Application of the New IEC International Design Standard for Offshore Wind Turbines to a Reference Site in the Massachusetts Offshore Wind Energy Area”, In Journal of Physics: Conference Series, vol. 1452, pp. 012038, 2020, doi: https://doi.org/10.1088/1742-6596/1452/1/012038