A predictive model to calculate the holdup in horizontal biphasic water-oil flow using an artificial neuronal network
Published 2022-05-12
Keywords
- artificial neural network,
- holdup,
- multiphase flow,
- surface velocity,
- Industry 4.0
How to Cite
Copyright (c) 2022 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
This paper presents the application of an artificial neural network (ANN) to develop a model able to predict the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe. The surface velocities of each fluid and the pressure differential in the pipe are used as input parameters of the multi-layer artificial neural network with back-propagation, while the volumetric fraction of the fluids is used as an output parameter in the training. The 56 experimental data were obtained in the laboratory LabPetro-CEPETRO-UNICAMP. The results of the predictive model with the best performance show a mean absolute error (AAPE) of 3.01 % and a coefficient of determination R^2 of 0.9964, using 15 neurons in the hidden layer of the network and the TanSig transfer function.
Downloads
References
- G. Valle-Tamayo, L. Valbuena-Luna, C. Rojas-Beltrán, M. Cabarcas-Simancas, “Modelo numérico para el análisis y el diseño de redes de tubería para flujo bifásico,” Rev. UIS Ing., vol. 17, no. 2, pp. 201-214, Oct. 2017, doi: https://doi.org/10.18273/revuin.v17n2-2018018
- M. Süßer, “Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance and Applications,” Cryogenics (Guildf)., vol. 40, no. 6, p. 421, 2000, doi: https://doi.org/10.18273/10.1016/S0011-2275(00)00051-5
- M. de M. F. Figueiredo, F. de C. T. Carvalho, A. M. F. Fileti, A. L. Serpa, “Flow pattern classification in water-air vertical flows using a single ultrasonic transducer,” Exp. Therm. Fluid Sci., vol. 119, no. January, 2020, doi: https://doi.org/10.18273/10.1016/j.expthermflusci.2020.110189
- W. Tang, Z. chuan Sun, W. Li, “Visualization of flow patterns during condensation in dimpled surface tubes of different materials,” Int. J. Heat Mass Transf., vol. 161, 2020, doi: https://doi.org/10.18273/10.1016/j.ijheatmasstransfer.2020.120251
- Z. Lin, X. Liu, L. Lao, H. Liu, “Prediction of two-phase flow patterns in upward inclined pipes via deep learning,” Energy, vol. 210, p. 118541, 2020, doi: https://doi.org/10.18273/10.1016/j.energy.2020.118541
- S. Zeguai, S. Chikh, L. Tadrist, “Experimental study of air-water two-phase flow pattern evolution in a mini tube: Influence of tube orientation with respect to gravity,” Int. J. Multiph. Flow, vol. 132, 2020, doi: https://doi.org/10.18273/10.1016/j.ijmultiphaseflow.2020.103413
- M. Descamps, R. V. A. Oliemans, G. Ooms, R. F. Mudde, R. Kusters, “Influence of gas injection on phase inversion in an oil-water flow through a vertical tube,” Int. J. Multiph. Flow, vol. 32, no. 3, pp. 311-322, 2006, doi: https://doi.org/10.18273/10.1016/j.ijmultiphaseflow.2005.10.006
- D. M. Rocha, C. H. M. de Carvalho, V. Estevam, O. M. H. Rodríguez, “Effects of water and gas injection and viscosity on volumetric fraction, pressure gradient and phase inversion in upward-vertical three-phase pipe flow,” J. Pet. Sci. Eng., vol. 157, pp. 519-529, 2017, doi: https://doi.org/10.18273/10.1016/j.petrol.2017.07.055
- Y. Ma, W. Liu, H. Wu, Y. Liu, J. Lyu, Z. Cai, “Visualization experiment of gas–liquid flow pattern downstream of single-orifice plates in horizontal pipes under an intermittent upstream flow,” Exp. Therm. Fluid Sci., vol. 119, 2019, p. 110206, 2020, doi: https://doi.org/10.18273/10.1016/j.expthermflusci.2020.110206
- M. W. Yaqub, R. Rusli, R. Pendyala, “Experimental study on gas-liquid-liquid three-phase flow patterns and the resultant pressure drop in a horizontal pipe upstream of the 90° bend,” Chem. Eng. Sci., vol. 226, p. 115848, 2020, doi: https://doi.org/10.18273/10.1016/j.ces.2020.115848
- E. S. Rosa, R. M. Salgado, T. Ohishi, N. Mastelari, “Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows,” Int. J. Multiph. Flow, vol. 36, no. 9, pp. 738-754, 2010, doi: https://doi.org/10.18273/10.1016/j.ijmultiphaseflow.2010.05.001
- V. S. Chalgeri, J. H. Jeong, “Flow regime identification and classification based on void fraction and differential pressure of vertical two-phase flow in rectangular channel,” Int. J. Heat Mass Transf., vol. 132, pp. 802-816, 2019, doi: https://doi.org/10.18273/10.1016/j.ijheatmasstransfer.2018.12.015
- F. Liang, H. Zheng, H. Yu, Y. Sun, “Gas-liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe,” Meas. Sci. Technol., vol. 27, no. 3, 2016, doi: https://doi.org/10.18273/10.1088/0957-0233/27/3/035304
- C. Sunde, S. Avdic, I. Pázsit, “Classification of two-phase flow regimes via image analysis and a neuro-wavelet approach,” Prog. Nucl. Energy, vol. 46, no. 3-4, pp. 348–358, 2005, doi: https://doi.org/10.18273/10.1016/j.pnucene.2005.03.015
- L. S. Zhai, N. De Jin, Z. K. Gao, Z. Y. Wang, D. M. Li, “The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows,” Chem. Eng. Sci., vol. 94, pp. 271-283, 2013, doi: https://doi.org/10.18273/10.1016/j.ces.2013.02.049
- K. J. Albion, L. Briens, C. Briens, F. Berruti, “Multiphase Flow Measurement Techniques for Slurry Transport,” Int. J. Chem. React. Eng., vol. 9, no. 1, pp. 1-4, Sep. 2011, doi: https://doi.org/10.18273/10.2202/1542-6580.1726
- M. M. Hernández-Cely, C. Ruiz-Díaz, “Estudio de los fluidos aceite-agua a través del sensor basado en la permitividad eléctrica del patrón de fluido,” Rev. UIS Ing., vol. 19, no. 3, pp. 177-186, 2020, doi: https://doi.org/10.18273/revuin.v19n3-2020017
- M. M. F. Figueiredo, J. L. Goncalves, A. M. V. Nakashima, A. M. F. Fileti, R. D. M. Carvalho, “The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows,” Exp. Therm. Fluid Sci., vol. 70, pp. 29-50, 2016, doi: https://doi.org/10.18273/10.1016/j.expthermflusci.2015.08.010
- H. Wu, F. Zhou, Y. Wu, “Intelligent identification system of flow regime of oil–gas–water multiphase flow,” Int. J. Multiph. Flow, vol. 27, no. 3, pp. 459-475, 2001, doi: https://doi.org/10.18273/10.1016/S0301-9322(00)00022-7
- T. A. AL-Qutami, R. Ibrahim, I. Ismail, M. A. Ishak, “Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing,” Expert Syst. Appl., vol. 93, pp. 72-85, 2018, doi: https://doi.org/10.18273/10.1016/j.eswa.2017.10.014
- M. R. G. Meireles, P. E. M. Almeida, M. G. Simões, “A comprehensive review for industrial applicability of artificial neural networks,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 585-601, 2003, doi: https://doi.org/10.1109/TIE.2003.812470
- F. A. Gomide, “Redes neurais artificiais para engenharia e ciências aplicadas: curso prático,” Sba Control. Automação Soc. Bras. Autom., vol. 23, no. 5, pp. 649-652, 2012, doi: https://doi.org/10.1590/s0103-17592012000500011
- F. Rozo-García, “Revisión de las tecnologías presentes en la industria 4.0,” Rev. UIS Ing., vol. 19, no. 2, pp. 177-191, 2020, doi: https://doi.org/10.18273/revuin.v19n2-2020019
- C. M. Ruiz-Díaz, M. M. Hernández-Cely, O. A. González-Estrada, “Modelo predictivo para la identificación de la fracción volumétrica en flujo bifásico,” Cienc. en Desarro., vol. 12, no. 2, pp. 49-55, Sep. 2021, doi: https://doi.org/10.19053/01217488.v12.n2.2021.13417
- R. Quiroga, O. A. González-Estrada, G. González Silva, “Efecto de la temperatura en la fracción de vapor del crudo pesado en el reactor Vortex de cavitación hidrodinámica mediante CFD,” Cienc. en Desarro., vol. 12, no. 2, pp. 57-65, Sep. 2021, doi: https://doi.org/10.19053/01217488.v12.n2.2021.13418
- Y. Yan, L. Wang, T. Wang, X. Wang, Y. Hu, Q. Duan, “Application of soft computing techniques to multiphase flow measurement: A review,” Flow Meas. Instrum., vol. 60, pp. 30-43, 2018, doi: https://doi.org/10.1016/j.flowmeasinst.2018.02.017
- G. H. Roshani, E. Nazemi, M. M. Roshani, “Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function,” Flow Meas. Instrum., vol. 54, no. October 2016, pp. 39-45, 2017, doi: https://doi.org/10.1016/j.flowmeasinst.2016.10.001
- C. M. Salgado, L. E. B. Brandão, C. M. N. A. Pereira, W. L. Salgado, “Salinity independent volume fraction prediction in annular and stratified (water-gas-oil) multiphase flows using artificial neural networks,” Prog. Nucl. Energy, vol. 76, pp. 17-23, 2014, doi: https://doi.org/10.1016/j.pnucene.2014.05.004
- C. M. Salgado, C. M. N. A. Pereira, R. Schirru, L. E. B. Brandão, “Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks,” Prog. Nucl. Energy, vol. 52, no. 6, pp. 555-562, 2010, doi: https://doi.org/10.1016/j.pnucene.2010.02.001
- A. Karami, G. H. Roshani, E. Nazemi, S. Roshani, “Enhancing the performance of a dual-energy gamma ray based three-phase flow meter with the help of grey wolf optimization algorithm,” Flow Meas. Instrum., vol. 64, pp. 164-172, 2018, doi: https://doi.org/10.1016/j.flowmeasinst.2018.10.015
- G. H. Roshani, R. Hanus, A. Khazaei, M. Zych, E. Nazemi, V. Mosorov, “Density and velocity determination for single-phase flow based on radiotracer technique and neural networks,” Flow Meas. Instrum., vol. 61, pp. 9-14, 2018, doi: https://doi.org/10.1016/j.flowmeasinst.2018.03.006
- R. H. Ruschel, “Proposição de modelo de fluxo de deslizamento para escoamento líquido-líquido horizontal,” University of Campinas, Campinas, Brasil, 2020.
- E. Jorjani, S. Chehreh Chelgani, S. Mesroghli, “Application of artificial neural networks to predict chemical desulfurization of Tabas coal,” Fuel, vol. 87, no. 12, pp. 2727–2734, 2008, doi: https://doi.org/10.1016/j.fuel.2008.01.029
- H. M. H. Al-rikabi, M. A. M. Al-ja, A. H. Ali, S. H. Abdulwahed, “Microprocessors and Microsystems Generic model implementation of deep neural network activation functions using GWO-optimized SCPWL model on FPGA,” Microprocessors and Microsystems, vol. 77, 2020, doi: https://doi.org/10.1016/j.micpro.2020.103141