Biomarcadores para la evaluación y diagnóstico del síndrome de ojo seco: una revisión

  • Sara Viviana Ángulo-Sánchez Fundación Universitaria del Área Andina, Bogotá.
  • David Alejandro Ortiz-Avila Fundación Universitaria del Área Andina, Bogotá.

Resumen

Introducción: El síndrome de ojo seco es una enfermedad en la que se generan signos y síntomas que conducen a alteraciones oculares prolongadas, por lo tanto, es relevante establecer con precisión la etiología de la enfermedad con la finalidad de establecer el tratamiento más efectivo, de allí, la importancia del desarrollo de exámenes innovadores como son los biomarcadores, los cuales permiten identificar con mayor precisión el cuadro clínico. Por esta razón, el presente trabajo pretende describir los principales avances de los biomarcadores de la superficie ocular y reconocer su aplicación clínica para el diagnóstico de ojo seco entre los años 2013 a 2018. Metodología: Se analizó literatura sobre biomarcadores empleados para el diagnóstico del ojo seco, mediante una revisión sistemática tipo narrativa de 2013 a 2018 por medio de los descriptores controlados “Dry Eye Syndrome” “biomarkers” “tear proteins” “eye proteins” seleccionados en DeCS y Pubmed; la búsqueda arrojó 120 estudios, de los cuales seleccionamos 35 para el análisis. Resultados: Son diversas las proteínas lagrimales que pueden ser relacionadas con la presencia y ausencia de la enfermedad, es vital que los biomarcadores sean valorados como una herramienta alternativa para diagnosticar con facilidad y precisión la enfermedad del ojo seco. Discusión: Los biomarcadores permiten reconocer los procesos patógenos y biológicos del síndrome de ojo seco, al reflejar el estado de la superficie ocular en presencia o ausencia de signos y síntomas, facilitando el diagnóstico precoz, seguimiento, tratamiento y control de la enfermedad. 

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Bhavsar AS, Bhavsar SG, Jain SM. A review on recent advances in dry eye: Pathogenesis and management. Oman J Ophthalmol. 2011; 4(2): 50-56. doi: 10.4103/0974-620X.83653.

2. Craig JP, Nelso JD, Azar DT, Belmonte C, Bron AJ, Chauhan SK, et al. TFOS DEWS II Report executive summary. Ocul Surf. 2017; 15(4): 802-812. doi: 10.1016/j.jtos.2017.08.003.

3. Ahn JM, Lee SH, Rim THT, Park RJ, Yang HS, Kim T, et al. Prevalence of and risk factors associated with dry eye: The Korea national health and nutrition examination survey 2010-2011. Am J Ophthalmol. 2014; 158(6):1205-1214.e7. doi: 10.1016/j.ajo.2014.08.021.

4. Jie Y, Xu L, Wu YY, Jonas JB. Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye (Lond). 2008; 23(3), 688-693. doi: 10.1038/sj.eye.6703101.

5. Galor A, Feuer W, Lee DJ, Flórez H, Carter D, Bozorgmehr P, et al. Prevalence and risk factors of dry eye syndrome in a United States veterans affairs population. Am J Ophthalmol. 2011; 152(3): 377-384.e2. doi: 10.1016/j.ajo.2011.02.026.

6. López-Rubio S, de Alba-Castilla MA, Rodríguez-García A. Prevalencia de manifestaciones oftalmológicas en pacientes con lupus eritematoso sistémico. Revista Mexicana de Oftalmología. 2012; 86(4): 240-249.

7. Uchino M, Yokoi N, Uchino Y, Dogur M, Kawashima M, Komuro A, et al. Prevalence of dry eye disease and its risk factors in visual display terminal users: the Osaka Study. Am J Ophthalmol. 2013; 156(4): 759-733. doi: 10.1016/j.ajo.2013.05.040.

8. Ginés JC. Síndrome del ojo seco. Rev Paraguay Reumatol. 2015; 1(1): 49-55.

9. Cho YK, Kim MS. Dry eye after cataract surgery and associated intraoperative risk factors. Korean J Ophthalmol. 2009; 23(2): 65-73. doi: 10.3341/kjo.2009.23.2.65.

10. Özkurt H, Özkurt YB, Basak M. Is dry eye syndrome a work-related disease among radiologists? Diagn Interv Radiol, 2006; 12(4): 163-165.

11. Liu NN, Liu L, Li J, Sun YZ. Prevalence of and risk factors for dry eye symptom in mainland china: a systematic review and meta-analysis. J Ophthalmol. 2014; 2014: 748654. doi: 10.1155/2014/748654.

11. Liu NN, Liu L, Li J, Sun YZ. Prevalence of and risk factors for dry eye symptom in mainland china: a systematic review and meta-analysis. J Ophthalmol. 2014; 2014: 748654. doi: 10.1155/2014/748654.

12. Boehm N, Funke S, Wiegand M, Wehrwein N, Pfeiffer N, Grus FH. Alterations in the tear proteome of dry eye patients--a matter of the clinical phenotype. Invest. Ophthalmol Vis Sci. 2013; 54(3): 2385-2392. doi: 10.1167/iovs.11-8751.

13. Lanzini M, Curcio C, Colabelli-Gisoldi RA, Mastropasqua A, Calienno R, Agnifili L,et al. In vivo and impression cytology study on the effect of compatible solutes eye drops on the ocular surface epithelial cell quality in dry eye patients. Mediators Inflamm. 2015. 2015: 351424. doi: 10.1155/2015/351424.

14. Schein, O, et al. Relation between signs and symptoms of dry eye in the elderly: a population based perspective.”Ophthalmology 1997; 104.9: 1395-1401.

15. Strimbu K, Tavel JA. What are biomarkers?. Curr Opin HIV AIDS. 2010; 5(6): 463-466. doi: 10.1097/COH.0b013e32833ed177.

16. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004; 1(2): 182-188. doi: 10.1602/neurorx.1.2.182.

17. Deschamps N, Baudouin C. Dry Eye and Biomarkers: present and future. Curr Ophthalmol Rep. 2013; 1: 65-74.

18. Pentyala S, Muller J, Tumillo T, Roy A, Mysore P, Pentyala S. A novel point-of-care biomarker recognition method: validation by detecting marker for diabetic nephropathy. Diagnostics (Basel). 2015; 5(2): 177-188. doi: 10.3390/diagnostics5020177.

19. Medina M. Generalidades de las pruebas diagnósticas, y su utilidad en la toma de decisiones médicas”. Rev Colomb Psiquiatr. 2011; 40(4): 787-797.

20. Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016;7(1):15.

21. Foulks GN, Pflugfelder SC. New testing options for diagnosing and grading dry eye disease. Am J Ophthalmol. 2014; 157(6): 1122-1129. doi: 10.1016/j.ajo.2014.03.002.

22. Bökenkamp A, Franke I, Schlieber M, Düker G, Schmitt J, Buderus S, et al. Beta-trace protein--a marker of kidney function in children: Original
research communication-clinical investigation. Clin Biochem. 2007; 40(13-14): 969-975. doi: 10.1016/j.clinbiochem.2007.05.003.

23. Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012; 31(6): 527-550. doi: 10.1016/j.preteyeres.2012.06.002.

24. Mii S, Nakamura K, Takeo K, Kurimoto S. Analysis of human tear proteins by two‐dimensional electrophoresis. Electrophoresis. 1992;13(1), 379-382. doi: 10.1002/elps.1150130177.

25. Glasson M, Molloy M, Walsh B, Willcox M, Morris C, Williams K. Development of mini-gel technology in two-dimensional electrophoresis for mass-screening of samples: application to
tears. Electrophoresis. 1998; 19(5): 852-855. doi: 10.1002/elps.1150190541.

26. Baier G, Wollensak G, Mur E, Redl B, Stoffler G, Gottinger W. Analysis of human tear proteins by different high-performance liquid chromatographic techniques. J Chromatography. 1990; 525: 319-328. doi: https://doi.org/10.1016/S0378-4347(00)83408-8.

27. Zeev MS, Miller DD, Latkany R. Diagnosis of dry eye disease and emerging technologies. Clin Ophthalmol. 2014; 8: 581-590. doi: 10.2147/OPTH.S45444.

28. Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. Biomarker Qualification: Toward a multiple stakeholder framework for biomarker development, regulatory acceptance, and utilization. Clin Pharmacol Ther. 2015; 98(1): 34-46. doi: 10.1002/cpt.136.

29. Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC. Diagnostic performance of a tear protein panel in early dry eye. Mol Vis. 2013; 19: 1247-1257.

30. Hohenstein-Blaul NT, Funke S, Grus FH. Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res. 2013; 117: 126-137. doi: 10.1016/j.exer.2013.07.015.

31. Pinto-Fraga J, Enríquez-de-Salamanca A, Calonge M, González-García MJ, López-Miguel A, Lópezde la Rosa A. Severity, therapeutic, and activity tear biomarkers in dry eye disease: An analysis from a phase III clinical trial. Ocul Surf. 2018; 16(3): 368-376. doi: 10.1016/j.jtos.2018.05.001.

32. Uchino Y, Mauris J, Woodward AM, Dieckow J, Amparo F, Dana R, et al. Alteration of galectin-3 in tears of patients with dry eye disease. Am J Ophthalmol. 2015; 159(6): 1027-1035.e3. doi: 10.1016/j.ajo.2015.02.008.

33. Brignole F, Riancho L, Ismail D, Deniaud M, Amrane M, Baudouin C. Correlation between the inflammatory marker HLA-DR and signs
and symptoms in moderate to severe dry eye disease. Invest Ophthalmol Vis Sci. 2017; 58(4): 2438-2448. doi: 10.1167/iovs.15-16555.

34. Jackson DC, Zeng W, Wong CY, Mifsud EJ, Williamson NA, Ang C, et al. Tear interferongamma as a biomarker for evaporative dry eye disease. Invest Ophthalmol Vis Sci. 2016; 57(11):
4824-4830. doi: 10.1167/iovs.16-19757.

35. Grosskreutz CL, Hockey HU, Serra D, Dryja TP. Dry Eye Signs and Symptoms Persist During Systemic Neutralization of IL-1β by Canakinumab or IL-17A by Secukinumab. Cornea. 2015; 34(12): 1551–1556. doi: 10.1097/ICO.0000000000000627.

36. Lee S, Jung S, Min S, Chul S, Min S, Kim Ti, et al. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non–Sjogren syndrome dry eye patients. Am J Ophthalmol. 2013; 156(2): 247-253.e1. doi: 10.1016/j.ajo.2013.04.003.

37. Dogru MW, Ibrahim OS, Matsumoto Y, Ogawa J, Shimazaki J, Tsubota K. The effects of 2 week senofilcon-A silicone hydrogel contact lens daily wear on tear functions and ocular surface health status. Cont Lens Anterior Eye. 2011; 38(6): 435-441. doi: 10.1016/j.clae.2010.12.001.

38. Pflugfelder S, Corrales R, de Paiva C. T helper cytokines in dry eye disease. Exp Eye Res. 2013; 117: 118-125. doi: 10.1016/j.exer.2013.08.013.

39. Luo G, Xin Y, Qin D, Yan A, Zhou Z, Liu Z. Correlation of interleukin-33 with Th cytokines and clinical severity of dry eye disease. Indian J Ophthalmol. 2018; 66(1): 39-43. doi: 10.4103/ijo.IJO_405_17.

40. Tan X, Sun S, Liu Y, Zhu T, Wang K, Ren T, et al. Analysis of Th17-associated cytokines in tears of patients with dry eye syndrome. Eye (Lond). 2014; 28(5): 608-613. doi: 10.1038/eye.2014.38.

41. Jobling K, Fai W. CD40 as a therapeutic target in Sjögren’s syndrome. Expert Rev Clin Immunol. 2018; 24(2): 121-132. doi: 10.1080/1744666X.2018.1485492.

42. Lanza NL, McClellan AL, Batawi H, Felix ER, Sarantopoulos KD, Levitt RC, et al. Dry Eye Profiles in Patients with a positive elevated surface matrix metalloproteinase 9 point-of-care test versus negative patients. Ocul Surf. 2016; 14(2): 216-223. doi: 10.1016/j.jtos.2015.12.007.

43. Sambursky R. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye. Clin Ophthalmol. 2016; 10: 2337-2343. doi: 10.2147/OPTH.S121256.

44. Shirai K, Okada Y, Cheon DJ, Miyajima M, Behringer RR, Yamanaka O, et al. Effects of the loss of conjunctival Muc16 on corneal epithelium and stroma in mice. Invest Ophthalmol Vis Sci. 2014; 55(6): 3626-3637. doi: 10.1167/iovs.13-12955.

45. Uchino Y, Uchino M, Yokoi N, Dogru M, Kawashima M, Okada N, et al. Alteration of tear mucin 5ac in office workers using visual display terminals: The Osaka Study. JAMA Ophthalmol. 2014; 132(8): 985-992. doi: 10.1001/jamaophthalmol.2014.1008.

46. Martin E, Oliver KM, Pearce EI, Tomlinson A, Simmons P, Hagan S. Effect of tear supplements on signs, symptoms and inflammatory markers in dry eye. Cytokine. 2018; 105: 37-44. doi: 10.1016/j.cyto.2018.02.009.

47. Boukes RJ, Boonstra A, Breebaart AC, Reits D, Glasius E, Luyendijk L, et al. Analysis of human tear protein profiles using high performance liquid
chromatography (HPLC). Doc Ophthalmol. 1987; 67(1-2): 105-113. doi: 10.1007/bf00142704.

48. Srinivasan S, Thangavelu M, Zhang L, Green KB, Nichols KK. iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci. 2012; 53(8): 5052-5059. doi: 10.1167/iovs.11-9022.

49. Caffery B, Joyce E, Boone A, Slomovic A, Simpson T, Jones L, et al. Tear lipocalin and lysozyme in Sjogren and non-Sjogren dry eye. Optom Vis Sci. 2008; 85(8): 661-667. doi: 10.1097/
OPX.0b013e318181ae4f.

50. Versura P, Nanni P, Bavelloni A, Blalock W, Piazzi M, Roda A, et al. Tear proteomics in evaporative dry eye disease. Eye (Lond). 2010; 24(8): 1396-402. doi: 10.1038/eye.2010.7.

51. Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018; 96(4): e412-e420. doi: 10.1111/aos.13526.

52. Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clinica Chimica Acta. 2006; 369(1): 17-28. doi: 10.1016/j.cca.2005.12.035.

53. Mann A, Tighe B. Tear analysis and lens–tear interactions Part I. Protein fingerprinting with microfluidic technology. Cont Lens Anterior Eye. 2007; 30(3): 163-173. doi: 10.1016/j.
clae.2007.03.006.

54. Vanarsa K, Ye Y, Han J, Xie C, Mohan C, Wu T. Inflammation associated anemia and ferritin as disease markers in SLE. Arthritis Res Ther. 2012; 14(4): R182. doi: 10.1186/ar4012.

55. Milner MS, Beckman KA, Luchs JI, Allen QB, Awdeh RM, Berdahl J, et al. Dysfunctional tear syndrome: dry eye disease and associated tear film disorders- new strategies for diagnosis and treatment. Curr Opin Ophthalmol. 2017; 27 (Suppl 1): 3-47. doi: 10.1097/01.icu.0000512373. 81749.b7.

56. Gao P, Simpson JL, Zhang J, Gibson PG. Galectin-3: its role in asthma and potential as an anti-inflammatory target. Respir Res. 2013; 14(1):136. doi: 10.1186/1465-9921-14-136.

57. Puthenedam M, Wu F, Shetye A, Michaels A, Rhee KJ, Kwon JH. Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflamm Bowel Dis. 2011; 17(1): 260-267. doi: 10.1002/ibd.21443.

58. Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shmueli EM, et al. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun. 2011; 25(5): 1008-1016. doi: 10.1016/j.bbi.2010.11.007.

59. Boehm N, Riechard A, Wiegand M, Pfieffer N. Proinflammatory Cytokine Profiling of tears from dry eye patients by means of antibody microarrays. Invest Ophthalmol Vis Sci. 2011;
52(10): 7725-7730. doi: 10.1167/iovs.11-7266.

60. Hu X, Topouzis S, Liang L, Stotish R. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 2004; 26(6): 262-272. doi: 10.1016/j.cyto.2004.03.007.

61. Moudgil KD, Choubey D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res. 2011; 31(10): 695-703. doi: 10.1089/jir.2011.0065.

62. Kang MH, Kim MK, Lee HJ, Lee HI, Wee WR, Lee JH. Interleukin-17 in various ocular surface inflammatory diseases. J Korean Med Sci. 2011; 26(7): 938-944. doi: 10.3346/jkms.2011.26.7.938.

63. Kyung-Sun N, Jee-Won M, Ja K, Chang R, Choun-Ki J. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry
eye disease. Invest Ophthalmol Vis Sci. 2012; 53(9): 5443-5450. doi: 10.1167/iovs.11-9417.

64. Colligris B, Crooke A, Huete-Toral F, Pintor J. An update on dry eye disease molecular treatment: advances in drug pipelines. Expert Opin Pharmacother. 2014; 15(10): 1371-1390. doi:
10.1517/14656566.2014.914492.

65. Albertsmeyer AC, Kakkassery V, Spurr-Michaud S, Beeks O, Gipson IK. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp Eye Res. 2010; 90(3): 444-451. doi: 10.1016/j.exer.2009.12.009.

66. Coursey TG, de Paiva CS. Managing Sjögren’s Syndrome and non-Sjögren Syndrome dry eye with anti-inflammatory therapy. Clin Ophthalmol. 2014; 8: 1447-1458. doi: 10.2147/OPTH.S35685.

67. Pflugfelder S, De Paiva C, Villarreal A, Stern M. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor beta2 production. Cornea. 2008; 27(1): 64-69. doi: 10.1097/ICO.0b013e318158f6dc.

68. D’Souza S, Tong L. Practical issues concerning tear protein assays in dry eye. Eye Vis (Lond). 2014; 1:6. doi: 10.1186/s40662-014-0006-y.

69. Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder S. Pro- and Anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest. Ophthalmol. Vis Sci. 2001; 42(10): 2283-2292.

70. Liu R, Rong B, Tu P, Tang Y, Song W, Toyos R, et al. Analysis of Cytokine levels in tears and clinical correlations after intense pulsed light treating meibomian gland dysfunction. Am J Ophthalmol. 2017; 183: 81-90. doi: 10.1016/j.ajo.2017.08.021.

71. Gipson IK. The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2007; 48(10): 4390-4398. doi: 10.1167/iovs.07-0770.

72. Thornton D, Rousseau K, McGuckin M. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008; 70: 459-486. doi: 10.1146/annurev.physiol.70.113006.100702.
Publicado
2020-03-18
Sección
Artículos Científicos