Revisión: exposición prenatal y pesticidas
PDF (Português (Brasil))

Palabras clave

Humanos, exposição mulheres gravidas, exposição fetal, biomarcadores, exposição a pesticidas, agroquímicos, glifosato, pesticidas e câncer

Cómo citar

Schuler-Faccini, L., & Salcedo-Arteaga, S. (2022). Revisión: exposición prenatal y pesticidas. Salud UIS, 54. https://doi.org/10.18273/saluduis.54.e:22014

Resumen

Introducción: para una adecuada protección de la salud humana, especialmente en poblaciones de mujeres embarazadas y niños vulnerables, es necesario estimar con precisión los riesgos en los efectos de la exposición de los plaguicidas en la salud. Objetivo: identificar artículos seleccionados a través de una búsqueda electrónica en las bases de datos PubMed y Science Direct que relacionaban los efectos de los plaguicidas con problemas de salud en las mujeres embarazadas y sus recién nacidos. Métodos: Esta revisión caracterizó estudios epidemiológicos que
evalúan los efectos sobre la salud de la exposición a los plaguicidas, especialmente los organofosforados (OP) y los organoclorados (OC). También se analizaron estudios en los que se evaluó la exposición en mujeres embarazadas que viven en zonas agrícolas, hombres con exposición ocupacional, niños nacidos y residentes en zonas donde se utilizan plaguicidas, estudios asociados al uso de plaguicidas con anomalías citogenéticas en los recién nacidos, daños en el ADN y efectos adversos al nacimiento por exposición a plaguicidas. Resultados: los resultados de los estudios aportaron
pruebas que apoyan la hipótesis de que la exposición a los plaguicidas se asocia negativamente con los efectos en
la calidad de vida de los niños cuyos padres están expuestos a los plaguicidas, ya que los niños están expuestos a
diferentes niveles de plaguicidas durante el embarazo, el embarazo, el nacimiento y el crecimiento. Conclusión: la validez de los estudios epidemiológicos y científicos revisados se ve muy reforzada por la evaluación de la exposición basada en la cuantificación de biomarcadores moleculares. 

https://doi.org/10.18273/saluduis.54.e:22014
PDF (Português (Brasil))

Referencias

FAO. International Code of Conduct on the Distribution and Use of Pesticides: Guidelines for the Registration of Pesticides. Rome: World Health Organization, 2010: p. 42.

Kalliora C, Mamoulakis C, Vasilopoulos E, Stamatiades GA, Kalafati L, Barouni R, et al. Association of pesticide exposure with human congenital abnormalities. Toxicol Appl Pharmacol. 2018; 346: 58–75. doi: https://doi.org/10.1016/j.taap.2018.03.025

EPA. Pesticide Industry Sales and Usage Report: 2006 and 2007 Market Estimates. Washington,

DC: Environmental Protection Agency Office of Prevention, Pesticides, and Toxic Substances, 2006.

Dash AP, Ejov M, Soares A, Ameneshewa B, Zaim M, Yadav RS, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect. 2012; 120(4): 577–582. doi: https://doi.org/10.1289/ehp.1104340

Corrion ML, Ostrea EM, Bielawski DM, Posecion NC, Seagraves JJ. Detection of prenatal exposure

to several classes of environmental toxicants and their metabolites by gas chromatography–mass

spectrometry in maternal and umbilical cord blood. J Chromatogr B Analyt Technol Biomed Life

Sci. 2005; 822(1–2): 221–229. doi: https://doi.org/10.1016/j.jchromb.2005.06.007

Schettler T, Stein J, Reich F, Valenti M. In harm’s way: toxic threats to child development. Cambridge; GBPSR; 2000: p. 136.

Curl CL, Fenske RA, Elgethun K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ Health Perspect. 2003; 111(3): 377–382. doi: https://doi.org/10.1289/ehp.5754

Saxena J. Hazard assessment of chemicals: Current developments. Volumen 3. Washington: Academic Press, 1984: p. 462.

Cantalamessa F, Barili P, Cavagna R, Sabbatini M, Tenore G, Amenta F. Influence of neonatal treatment with the pyrethroid insecticide cypermethrin on the development of dopamine receptors in the rat kidney. Mech Ageing Dev . 1998; 103(2): 165–178. doi: https://doi.org/10.1016/S0047-6374(98)00039-6

Garry VF, Harkins ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL. Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ Health Perspect. 2002; 110 (Suppl 3): 441–449. doi: https://doi.org/10.1289/ehp.02110s3441

Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O. Toxic effects

of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology . 2013; 307: 136–145. doi: https://doi.org/10.1016/j.tox.2012.06.009

Mehrpour O, Karrari P, Zamani N, Tsatsakis AM, Abdollahi M. Occupational exposure to pesticides and consequences on male semen and fertility: A review. Toxicol Lett. 2014; 230(2): 146–156. doi: https://doi.org/10.1016/j.toxlet.2014.01.029

Tzatzarakis MN, Karzi V, Vakonaki E, Goumenou M, Kavvalakis M, Stivaktakis P, et al. Bisphenol A in soft drinks and canned foods and data evaluation. Food Addit Contam Part B. 2017; 10(2): 85–90. doi: https://doi.org/10.1080/19393210.2016.1266522

Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett. 2012; 210(2): 155–168. doi: https://doi.org/10.1016/j.toxlet.2011.10.007

Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017; 51: 56–70. doi: https://doi.org/10.1016/j.etap.2017.02.024

Tsatsakis AM, Tzatzarakis MN, Koutroulakis D, Toutoudaki M, Sifakis S. Dialkyl phosphates in meconium as a biomarker of prenatal exposure to organophosphate pesticides: A study on pregnant women of rural areas in Crete, Greece. Xenobiotica . 2009; 39(5): 364–373. doi: https://doi.org/10.1080/00498250902745090

Repetto R, Baliga SS. Trends and Patterns of Pesticide Use. Pesticides and the immune system: the public health risks. Washington, DC: World Resources Institute, 1996: p. 109.

Repetto RC, Baliga SS. Pesticides and the immune system : the public health risks. Washington, DC: World Resources Institute, 1996: p. 103.

Petrakis D, Vassilopoulou L, Mamoulakis C, Psycharakis C, Anifantaki A, Sifakis S, et al. Endocrine disruptors leading to obesity and related diseases. Int J Environ Res Public Health. 2017; 14(10): 1282. doi: https://doi.org/10.3390/ijerph14101282

Bonner MR, Freeman LEB, Hoppin JA, Koutros S, Sandler DP, Lynch CF, et al. Occupational exposure to pesticides and the incidence of lung cancer in the agricultural health study. Environ Health Perspect. 2017; 125(4): 544–551. doi: https://doi.org/10.1289/EHP456

Luo D, Zhou T, Tao Y, Feng Y, Shen X, Mei S. Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis ofobservational studies. Sci Rep. 2016; 6: 25768. doi: https://doi.org/10.1038/srep25768

Wiklund K, Dich J, Holm L-E. Risk of malignant lymphoma in Swedish pesticide appliers . Br J Cancer.1987; 56(4). doi: https://doi.org/10.1038/bjc.1987.234

Brouwer M, Huss A, van der Mark M, Nijssen PCG, Mulleners WM, Sas AMG, et al. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ Int. 2017; 107: 100–110. doi: https://doi.org/10.1016/j.envint.2017.07.001

Mazur CS, Marchitti SA, Zastre J. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide–drug interactions. Toxicol Lett . 2015; 232(1): 37–45. doi: https://doi.org/10.1016/j.toxlet.2014.09.020

Kirkhorn SR, Schenker MB. Current Health effects of agricultural work: Respiratory disease, cancer, reproductive effects, musculoskeletal injuries, and pesticide–related illnesses. J Agric Saf Health. 2002; 8(2): 199–214. doi: https://doi.org.10.13031/2013.8432

Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol. 2013; 59:129–36. doi: https://doi.org/10.1016/j.fct.2013.05.057

Musicco M, Sant M, Molinari S, Filippini G, Gatta G, Berrino F. A case-control study of brain gliomas and occupational exposure to chemical carcinogens: the 785. doi: https://doi.org/10.1093/oxfordjournals.aje.a115031

Ansbaugh N, Shannon J, Mori M, Farris PE, Garzotto M. Agent Orange as a risk factor for highgrade prostate cancer. Cancer. 2013; 119(13): 2399–2404. doi: https://doi.org/10.1002/cncr.27941

Norman C, Colin. EPA halts dieldrin production. Nature. 1974; 250(5467): 528. doi: https://doi.org/10.1038/250528a0

Fear NT, Roman E, Reeves G, Pannett B. Childhood cancer and paternal employment in agriculture: the role of pesticides. Br J Cancer. 1998; 77(5): 825–829. doi: https://doi.org/10.1038/bjc.1998.134

Bahadar H, Abdollahi M, Maqbool F, Baeeri M, Niaz K. Mechanistic overview of immune modulatory effects of environmental toxicants. Inflamm Allergy-Drug Targets. 2015; 13(6): 382–386. doi: https://doi.org/10.2174/1871528114666150529103003

Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S, et al. The influence of endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol. 2013; 29(5): 444–447. https://doi.org/10.3109/09513590.2012.758702

Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, et al. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments.

Reprod Toxicol. 2013; 42: 224–231. https://doi.org/10.1016/j.reprotox.2013.09.008

Mrema EJ, Rubino FM, Brambilla G, Moretto A. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013; 307: 74–88. doi: https://doi.org/10.1016/j.tox.2012.11.015

Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive Summary to EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev.2015; 36(6): 593–602. doi: https://doi.org/10.1210/er.2015-1093

Foster PMD. Mode of action: Impaired Fetal leydig cell function—effects on male reproductive development produced by certain phthalate esters. Crit Rev Toxicol. 2005; 35(8–9): 713–719. doi: https://doi.org/10.1080/10408440591007395

Fisher JS. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction. 2004; 127(3): 305–315. doi: https://doi.org/10.1530/rep.1.00025

Usmani KA. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals. Drug Metab Dispos. 2006; 34(9): 1606–1614. doi: https://doi.org/10.1124/dmd.106.010439

Zachow R, Uzumcu M. The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat

ovarian granulosa cells in vitro. Reprod Toxicol.2006; 22(4): 659–665. doi: https://doi.org/10.1016/j.reprotox.2006.04.018

Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): Elevated serum levels of bisphenol a in women with PCOS. J Clin Endocrinol Metab. 2011; 96(3): E480–484. doi: https://doi.org/10.1210/jc.2010-1658

Wang B, Yi D, Jin L, Li Z, Liu J, Zhang Y, et al. Organochlorine pesticide levels in maternal serum and risk of neural tube defects in offspring in Shanxi Province, China: A case–control study. Sci Total Environ. 2014; 490: 1037–1043.

Rochester JR. Bisphenol A and human health: A review of the literature. Reprod Toxicol. 2013; 42: 132–155. doi: https://doi.org/10.1016/j.reprotox.2013.08.008

Ehrlich S, Williams PL, Missmer SA, Flaws JA, Berry KF, Calafat AM, et al. Urinary bisphenol a concentrations and implantation failure among women undergoing in Vitro Fertilization. Environ Health Perspect. 2012; 120(7): 978–983.

Hao J, Wang J, Zhao W, Ding L, Gao E, Yuan W. Effect of bisphenol A exposure on sex hormone level in occupational women. Wei Sheng Yan Jiu. 2011; 40(3): 312–4, 319.

Yang M, Ryu J-H, Jeon R, Kang D, Yoo K-Y. Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol. 2009; 83(3): 281–285. doi: https://doi.org/10.1007/s00204-008-0364-0

Aschengrau A, Coogan PF, Quinn MM, Cashins LJ. Occupational exposure to estrogenic chemicals and the occurrence of breast cancer: An exploratory analysis. Am J Ind Med. 1998; 34(1): 6–14. doi: https://doi.org/10.1002/(SICI)1097-0274(199807)34:1<6::AID-AJIM2>3.0.CO;2-X

Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, et al. Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect. 2012; 120(3): 464–470. doi: https://doi.org/10.1289/ehp.1103634

Mahalingaiah S, Missmer SA, Maity A, Williams PL, Meeker JD, Berry K, et al. Association of Hexachlorobenzene (HCB), Dichlorodiphenyltrichloroethane (DDT), and Dichlorodiphenyldichloroethylene (DDE) with in Vitro Fertilization (IVF) Outcomes. Environ

Health Perspect. 2012; 120(2): 316. doi: https://doi.org/10.1289/ehp.1103696

Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B. Early-life exposure to organophosphate pesticides and pediatric

respiratory symptoms in the CHAMACOS cohort. Environ Health Perspect. 2015; 123(2): 179–185. doi: https://10.1289/ehp.1408235

Zhang Y, Han S, Liang D, Shi X, Wang F, Liu W, et al. Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: A birth cohort study in Shenyang, China. Pant AB, editor. PLoS One. 2014; 9(2): e88491. doi: https://

doi.org/10.1371/journal.pone.0088491

Peiris-John RJ, Wickremasinghe R. Impact of lowlevel exposure to organophosphates on human reproduction and survival. Trans R Soc Trop Med Hyg. 2008; 102(3): 239–245. doi: https://doi.org/10.1016/j.trstmh.2007.11.012

Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009; 150(10): 4681–4691. doi: https://doi.org/10.1210/en.2009-0499

Tang W-Y, Newbold R, Mardilovich K, Jefferson W, Cheng RYS, Medvedovic M, et al. Persistent hypomethylation in the promoter of Nucleosomal Binding Protein 1 ( Nsbp 1) correlates with overexpression of Nsbp 1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology. 2008; 149(12): 5922–5931. doi: https://doi.org/10.1210/en.2008-0682

Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992; 305(6854): 609–613. doi: https://doi.org/10.1136/bmj.305.6854.609

Jouannet P, Wang C, Eustache F, Kold-Jensen T, Auger J. Semen quality and male reproductive health: the controversy about human sperm concentration decline. APMIS. 2001; 109(5): 333–344. doi: https://doi.org/10.1034/j.1600-0463.2001.090502.x

Swan SH, Elkin EP, Fenster L. The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996. Environ Health Perspect. 2000; 108(10): 961–966. doi: https://doi.org/10.1289/ehp.00108961

Jørgensen N, Andersen A-G, Eustache F, Irvine DS, Suominen J, Petersen JH, et al. Regional differences in semen quality in Europe. Hum Reprod. 2001; 16(5): 1012–1019. doi: https://doi.org/10.1093/humrep/16.5.1012

Jorgensen N, Carlsen E, Nermoen I, Punab M, Suominen J, Andersen A-G, et al. East-West gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Hum Reprod. 2002; 17(8): 2199–2208. doi: https://doi.org/10.1093/humrep/17.8.2199

Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010; 588(Pt 23): 4795–4810. doi: https://doi.org/10.1113/jphysiol.2010.199448

Yucra S, Rubio J, Gasco M, Gonzales C, Steenland K, Gonzales GF. Semen quality and reproductive sex hormone levels in peruvian pesticide sprayers. Int J Occup Environ Health. 2006; 12(4): 355–361. doi: https://doi.org/10.1179/oeh.2006.12.4.355

Lifeng T, Shoulin W, Junmin J, Xuezhao S, Yannan L, Qianli W, et al. Effects of fenvalerate exposure on semen quality among occupational workers. Contraception. 2006; 73(1): 92–96. doi: https://doi.org/10.1016/j.contraception.2005.06.067

Hossain F, Ali O, D’Souza UJA, Naing DKS. Effects of pesticide use on semen quality among farmers in rural areas of Sabah, Malaysia. J Occup Health. 2010; 52(6): 353–360. doi: https://doi.org/10.1539/joh.L10006

Geng X, Shao H, Zhang Z, Ng JC, Peng C. Malathion-induced testicular toxicity is associated with spermatogenic apoptosis and alterations in testicular enzymes and hormone levels in male Wistar rats. Environ Toxicol Pharmacol. 2015; 39(2): 659–667. doi: https://doi.org/10.1016/j.etap.2015.01.010

Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004; 10(6): RA141-147.

Petersen MS, Halling J, Weihe P, Jensen TK, Grandjean P, Nielsen F, et al. Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls. Environ Res. 2015; 138: 345–351. doi: https://doi.org/10.1016/j.envres.2015.02.030

Polanco Rodríguez ÁG, Riba López MI, DelValls Casillas TÁ, Araujo León JA, Mahjoub O, Prusty AK. Monitoring of organochlorine pesticides in blood of women with uterine cervix cancer. Environ Pollut. 2017; 220: 853–862. doi: https://doi.org/10.1016/j.envpol.2016.10.068

Schinasi L, Leon M, Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: A systematic review and meta-analysis. Int J Environ Res Public Health. 2014; 11(4): 4449–4527. doi: https://doi.org/10.3390/ijerph110404449

Alavanja MCR, Samanic C, Dosemeci M, Lubin J, Tarone R, Lynch CF, et al. Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort. Am J Epidemiol. 2003; 157(9): 800–814. doi: https://doi.org/10.1093/aje/kwg040

Zahm SH, Blair A. Pesticides and non-Hodgkin’s lymphoma. Cancer Res. 1992; 52(19 Suppl): 5485s–5488s.

Pestana D, Teixeira D, Faria A, Domingues V, Monteiro R, Calhau C. Effects of environmental organochlorine pesticides on human breast cancer: Putative involvement on invasive cell ability. Environ Toxicol. 2015; 30(2): 168–176. doi: https://doi.org/10.1002/tox.21882

WHO/CDC/ICBDSR. Birth defects surveillance: atlas of selected congenital anomalies. Geneva: World Health Organization, 2014: p. 1–28.

Stillerman KP, Mattison DR, Giudice LC, Woodruff TJ. Environmental exposures and adverse pregnancy outcomes: A review of the science. Reprod Sci. 2008 ; 15(7): 631–650. doi: https://doi.org/10.1177%2F1933719108322436

Selevan SG, Kimmel CA, Mendola P. Identifying critical windows of exposure for children’s health. Environ Health Perspect. 2000; 108(suppl 3): 451–455. doi: https://doi.org/10.1289/ehp.00108s3451

Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, et al. Updated national birth prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res Part A Clin Mol Teratol. 2010; 88(12): 1008–1016. doi:

https://doi.org/10.1002/bdra.20735

Agopian AJ, Langlois PH, Cai Y, Canfield MA, Lupo PJ. Maternal Residential Atrazine Exposure and Gastroschisis by Maternal Age. Matern Child Health J. 2013; 17(10): 1768–1675. doi: https://doi.org/10.1007/s10995-012-1196-3

Engel LS, O’Meara ES, Schwartz SM. Maternal occupation in agriculture and risk of limb defects in Washington State, 1980-1993. Scand J Work Environ Health. 2000; 26(3): 193–198. doi: https://doi.org/10.5271/sjweh.531

Kielb C, Lin S, Herdt-Losavio M, Bell E, Chapman B, Rocheleau CM, et al. Maternal periconceptional occupational exposure to pesticides and selected musculoskeletal birth defects. Int J Hyg Environ Health. 2014; 217(2–3): 248–254. doi: https://doi.

org/10.1016/j.ijheh.2013.06.003

Shaw GM, Yang W, Roberts E, Kegley SE, Padula A, English PB, et al. Early pregnancy agricultural pesticide exposures and risk of gastroschisis among offspring in the San Joaquin Valley of California. Birth Defects Res Part A Clin Mol Teratol. 2014; 100(9): 686–694. doi: https://doi.org/10.1002/bdra.23263

Waller SA, Paul K, Peterson SE, Hitti JE. Agricultural-related chemical exposures, season of conception, and risk of gastroschisis in Washington State. Am J Obstet Gynecol. 2010; 202(3): 241.e1-241.e6.doi: https://doi.org/10.1016/j.ajog.2010.01.023

Kalliora C, Mamoulakis C, Vasilopoulos E, Stamatiades GA, Kalafati L, Barouni R, et al. Association of pesticide exposure with human

congenital abnormalities. Toxicol Appl Pharmacol. 2018; 346: 58–75. doi: https://doi.org/10.1016/j.taap.2018.03.025

Botto LD, Correa A, Erickson JD. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 2001; 107(3); e32. doi: https://doi.org/10.1542/peds.107.3.e32

Bjornard K, Riehle-Colarusso T, Gilboa SM, Correa A. Patterns in the prevalence of congenital heart defects, metropolitan Atlanta, 1978 to 2005. Birth Defects Res Part A Clin Mol Teratol. 2013; 97(2): 87–94. doi: https://doi.org/10.1002/bdra.23111

Yang Q, Chen H, Correa A, Devine O, Mathews TJ, Honein MA. Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birth Defects Res Part A Clin Mol Teratol. 2006; 76(10): 706–713. doi: https://doi.org/10.1002/bdra.20308

Rocheleau CM, Bertke SJ, Lawson CC, Romitti PA, Sanderson WT, Malik S, et al. Maternal occupational pesticide exposure and risk of

congenital heart defects in the national birth defects prevention study. Birth Defects Res Part A Clin Mol Teratol. 2015; 103(10): 823–833. doi: https://doi.org/10.1002/bdra.23351

Loffredo CA, Silbergeld EK, Ferencz C, Zhang J. Association of transposition of the great arteries in infants with maternal exposures to herbicides and rodenticides. Am J Epidemiol. 2001; 153(6): 529–536. doi: https://doi.org/10.1093/aje/153.6.529

Copp AJ, Stanier P, Greene N DE. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol. 2013; 12(8): 799–810. doi: https://doi.org/10.1016/S1474-4422(13)70110-8

Blatter BM, Roeleveld N, Bermejo E, Martínez-Frías ML, Siffel C, Czeizel AE. Spina bifida and parental occupation: Results from three

malformation monitoring programs in Europe. Eur J Epidemiol. 2000; 16(4): 343–351. doi: https://doi.org/10.1023/A:1007679525757

Fear NT, Hey K, Vincent T, Murphy M. Paternal occupation and neural tube defects: a case?control study based on the Oxford Record Linkage Study register. Paediatr Perinat Epidemiol. 2007; 21(2): 163–168. doi: https://doi.org/10.1111/j.1365-3016.2007.00793.x

Makelarski JA, Romitti PA, Rocheleau CM, Burns TL, Stewart PA, Waters MA, et al. Maternal periconceptional occupational pesticide exposure and neural tube defects. Birth Defects Res Part A Clin Mol Teratol. 2014; 100(11): 877–886. doi: https://doi.org/10.1002/bdra.23293

Brender JD, Felkner M, Suarez L, Canfield MA, Henry JP. Maternal pesticide Exposure and Neural Tube Defects in Mexican Americans. Ann

Epidemiol. 2010; 20(1): 16–22. doi: https://doi.

org/10.1016/j.annepidem.2009.09.011

Skakkebæk NE, Rajpert-De Meyts E, Main KM.

Testicular dysgenesis syndrome: an increasingly

common developmental disorder with environmental

aspects: Opinion. Hum Reprod. 2001; 16(5): 972–

doi: https://doi.org/10.1093/humrep/16.5.972

Virtanen H, Rajpertdemeyts E, Main K, Skakkebaek

N, Toppari J. Testicular dysgenesis syndrome and the

development and occurrence of male reproductive

disorders. Toxicol Appl Pharmacol. 2005;

(2): 501–505. doi: https://doi.org/10.1016/j.

taap.2005.01.058

Sharpe RM. The ’oestrogen hypothesis’- where do

we stand now?1. Int J Androl . 2003; 26(1): 2–15. doi:

https://doi.org/10.1046/j.1365-2605.2003.00367.x

Esplugues A, Fernández-Patier R, Aguilera I,

Iñíguez C, Dos Santos SG, Aguirre Alfaro A, et al.

Exposición a contaminantes atmosféricos durante el

embarazo y desarrollo prenatal y neonatal: protocolo

de investigación en el proyecto INMA (Infancia y

Medio Ambiente). Gac Sanit. 2007; 21(2): 162–171.

doi: https://doi.org/10.1157/13101050

Pierik FH, Klebanoff MA, Brock JW, Longnecker

MP. Maternal pregnancy serum level of

heptachlor epoxide, hexachlorobenzene, and

β-hexachlorocyclohexane and risk of cryptorchidism

in offspring. Environ Res. 2007; 105(3): 364–369.

doi: https://doi.org/10.1016/j.envres.2007.04.005

Brucker-Davis F, Wagner-Mahler K, Delattre I,

Ducot B, Ferrari P, Bongain A, et al. Cryptorchidism

at birth in Nice area (France) is associated with

higher prenatal exposure to PCBs and DDE,

as assessed by colostrum concentrations. Hum

Reprod. 2008; 23(8): 1708–1718. doi: https://doi.

org/10.1093/humrep/den186

Michalakis M, Tzatzarakis MN, Kovatsi L, Alegakis

AK, Tsakalof AK, Heretis I, et al. Hypospadias in

offspring is associated with chronic exposure of

parents to organophosphate and organochlorine

pesticides. Toxicol Lett. 2014; 230(2): 139–145.

doi: https://doi.org/10.1016/j.toxlet.2013.10.015

Chevrier C, Limon G, Monfort C, Rouget F,

Garlantézec R, Petit C, et al. Urinary biomarkers

of prenatal atrazine exposure and adverse birth

outcomes in the PELAGIE birth cohort. environ

health perspect. 2011; 119(7): 1034–1041. doi:

https://doi.org/10.1289/ehp.1002775

Bianca S, Li Volti G, Caruso-Nicoletti M, Ettore

G, Barone P, Lupo L, et al. Elevated incidence of

hypospadias in two sicilian towns where exposure

to industrial and agricultural pollutants is high.

Reprod Toxicol. 2003; 17(5): 539–545. doi: https://

doi.org/10.1016/S0890-6238(03)00099-6

Brouwers MM, Feitz WFJ, Roelofs LAJ,

Kiemeney LALM, de Gier RPE, Roeleveld N. Risk

factors for hypospadias. Eur J Pediatr. 2007; 166(7):

–678. doi: https://doi.org/10.1007/s00431-006-

-z

Carbone P, Giordano F, Nori F, Mantovani

A, Taruscio D, Lauria L, et al. The possible role

of endocrine disrupting chemicals in the aetiology

of cryptorchidism and hypospadias: a populationbased

case?control study in rural Sicily. Int J Androl.

; 30(1): 3–13. doi: https://doi.org/10.1111/

j.1365-2605.2006.00703.x

Dugas J, Nieuwenhuijsen MJ, Martinez D,

Iszatt N, Nelson P, Elliott P. Use of biocides and

insect repellents and risk of hypospadias. Occup

Environ Med. 2010; 67(3): 196–200. doi: http://

dx.doi.org/10.1136/oem.2009.047373

Meyer KJ, Reif JS, Veeramachaneni DNR,

Luben TJ, Mosley BS, Nuckols JR. Agricultural

pesticide use and hypospadias in Eastern Arkansas.

Environ Health Perspect. 2006; 114(10): 1589–

doi: https://doi.org/10.1289/ehp.9146

Infante-Rivard C, Labuda D, Krajinovic M,

Sinnett D. Risk of childhood leukemia associated

with exposure to pesticides and with gene

polymorphisms. Epidemiology. 1999; 10(5): 481–

Flower KB, Hoppin JA, Lynch CF, Blair A,

Knott C, Shore DL, et al. Cancer risk and parental

pesticide application in children of Agricultural

Health Study participants. Environ Health Perspect.

; 112(5): 631–635. doi: https://doi.org/10.1289/

ehp.6586

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Lavinhia Schuler-Faccini, Shirley Salcedo-Arteaga

Descargas

Los datos de descargas todavía no están disponibles.