Fuerza prensil y composición corporal en escolares colombianos. Estudio piloto
PDF

Palabras clave

Fuerza de la mano
Niño
Estado nutricional
Desarrollo infantil
Correlación de datos
Proteínas musculares
Desarrollo musculoesquelético

Cómo citar

Niño-Cruz, G. I., Herrera-Anaya, E. ., & Gamboa-Delgado, E. M. (2022). Fuerza prensil y composición corporal en escolares colombianos. Estudio piloto. Salud UIS, 55. https://doi.org/10.18273/saluduis.55.e:23013

Resumen

Introducción: algunos estudios han encontrado relación entre exceso de peso y baja fuerza de prensión relativa. En países de ingresos socioeconómicos medianos y bajos hay pocas evidencias que evalúen la fuerza prensil y su
relación con la composición corporal en población pediátrica. Objetivo: evaluar la correlación entre la fuerza prensil y la composición corporal de escolares de Bucaramanga, Colombia. Materiales y Métodos: Se realizó un estudio piloto de corte transversal, analítico, correlacional. Participaron niños en edad escolar de Bucaramanga, Colombia. Las principales variables dependientes fueron masa muscular, agua corporal total, proteínas (kg) y el porcentaje de
grasa corporal. La variable independiente correspondió a la fuerza prensil. Se usó el coeficiente de correlación de Spearman para explorar la relación entre variables. Resultados: el promedio de la fuerza prensil en el total de la muestra fue de 13,8 ± 3,2 Newton. Se encontraron correlaciones positivas y estadísticamente significativas entre la fuerza prensil y la masa musculoesquelética (r = 0,73), agua corporal total (r = 0,73) y proteínas (r = 0,74). Discusión: nuestros resultados son consistentes con evidencias previas que identifican a la fuerza prensil como un indicador de la composición corporal, específicamente en las variables de masa musculoesquelética y proteínas. Conclusión: los niños en el tercil más alto de fuerza prensil presentan los terciles más altos de masa musculoesquelética, agua corporal total y proteínas.

https://doi.org/10.18273/saluduis.55.e:23013
PDF

Referencias

Bobos P, Nazari G, Lu Z, MacDermid JC. Measurement properties of the hand grip strength assessment: A systematic review with meta-analysis. Arch Phys Med Rehabil. 2020; 101(3): 553-565. doi: 10.1016/j.apmr.2019.10.183.

Schefold JC, Wollersheim T, Grunow JJ, Luedi MM, Z’Graggen WJ, Weber-Carstens S. Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle. 2020; 11(6): 1399-1412. doi: 10.1002/jcsm.12620

Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and metaanalysis. Ageing Res Rev. 2020; 64:101185. doi: 10.1016/j.arr.2020.101185

Smith S, Madden AM. Body composition and functional assessment of nutritional status in adults: a narrative review of imaging, impedance, strength and functional techniques. J Hum Nutr Diet. 2016; 29(6): 714-732. doi: 10.1111/jhn.12372.

Wu R, Delahunt E, Ditroilo M, Lowery M, De Vito G. Effects of age and sex on neuromuscularmechanical determinants of muscle strength. Age (Dordr). 2016;38(3):57. doi: 10.1007/s11357-016-9921-2

Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR, et al. Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab. 2002; 282: E1191e6. doi: 10.1152/ajpendo.00416.2001

Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord. 2001; 25:676e81. doi: 10.1038/sj.ijo.0801560

Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016; 17(3): 467-483. doi: 10.1007/s10522-015-9626-4

Thivel D, Ring-Dimitriou S, Weghuber D, Frelut European Childhood Obesity Group. Obes Facts. 2016;9(1):52-63. doi: 10.1159/000443687

Cossio-Bolaños M, Gómez-Campos R, Castelli Correia de Campos LF, Sulla-Torres J, Urra-Albornoz C, Pires Lopes V. Muscle strength and body fat percentage in children and adolescents from the Maule region, Chile. Arch Argent Pediatr. 2020; 118(5): 320-326. doi: 10.5546/aap.2020.eng.320

Palacio-Agüero A, Díaz-Torrente X, Quintiliano Scarpelli Dourado D. Relative handgrip strength, nutritional status and abdominal obesity in Chilean adolescents. PLoS One. 2020; 15(6): e0234316. doi: 10.1371/journal.pone.0234316

Cohen DD, Gómez-Arbeláez D, Camacho PA, Pinzon S, Hormiga C, Trejos-Suarez J, et al. Low muscle strength is associated with metabolic risk factors in Colombian children: the ACFIES study. PLoS One. 2014; 9(4): e93150. doi: 10.1371/journal.pone.0093150

Sothern MS, Loftin M, Suskind RM. Udall JN, Blecker U. The health benefits of physical activity in children and adolescents: Implications for chronic disease prevention. Eur J Pediatr. 1999; 158(4): 271-274. doi: 10.1007/s004310051070

Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010; 169(3):281- 287. doi: 10.1007/s00431-009-1010-4

Castro-Piñero J, Ortega FB, Artero E, Girela-Rejón MJ, Mora J, Sjöström M, et al. Assessing muscular strength in youth: Usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res. 2010; 24(7): 810-817. doi: 10.1519/JSC.0b013e3181ddb03d

Redfield R, Schuchat A, Dauphin L. Youth Risk Behavior Surveillance, Morbidity and Mortality Weekly Report. United States; 2017. (Morbidity and Mortality Weekly Report). Cent Dis Control Prev. 2018; 67(8): 1-114. Disponible en: https://www.cdc.gov/mmwr/volumes/67/ss/ss6708a1.htm

Matsudo VK, Matsudo SM, Machado de Rezende LF, Raso W. Handgrip strength as a predictor of physical fitness in children and adolescents. Rev Bras Cineantropom Desempenho Hum. 2015, 17(1): 1-10.

Sociedad Internacional para el Avance de la Cineantropometría ISAK. Normas Internacionales para la Valoración Antropométrica. 2001. Librería Nacional de Australia. ISBN 0 86803 712 5.

Reisberg K, Riso EM, Jürimäe J (2021) Physical fitness in preschool children in relation to later body composition at first grade in school. PLoS One. 2021; 16(1): e0244603. https://doi.org/10.1371/journal.pone.0244603

Makgae PJ, Monyeki KD, Brits SJ, Kemper HC, Mashita J. Somatotype and blood pressure of rural South African children aged 6-13 years: Ellisras longitudinal growth and health study. Ann Hum Biol. 2007;34(2):240-51. doi: 10.1080/03014460601144219

Monyeki KD, Toriola AL, de Ridder JH, Kemper HC, Steyn NP, Nthangeni ME, et al. Stability of somatotypes in 4 to 10 year-old rural South African girls. Ann Hum Biol. 2002; 29(1): 37-49. doi: 10.1080/03014460110054984.

Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev. 2013; 14(11): 895-905. doi: 10.1111/obr.12061

Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30(2):135-42. doi: 10.1016/j.clnu.2010.09.010

Gerber M, Ayekoé S, Bonfoh B, Coulibaly J, Daouda D,Gba B, et al. Is grip strength linked to body composition and cardiovascular risk markers in primary schoolchildren? Crosssectional data from three African countries. BMJ Open. 2022; 12(6): e052326. doi: 10.1136/bmjopen-2021-052326.

Lu Y, Li G, Ferrari P, Freisling H, Qiao Y, Wu L, Shao L, Ke C. Associations of handgrip strength with morbidity and all-cause mortality of cardiometabolic multimorbidity. BMC Med. 2022;20(1):191. doi:10.1186/s12916-022-02389-y

Hyde N, Duckham R, Wark J, Brennan-Olsen S, Hosking S, Holloway-Kew K, et al. The Association between muscle mass and strength in relation to bone measures in a paediatric population: Sex-specific effects. Calcif Tissue Int. 2020; 107:121-125. doi: 10.1007/s00223-020-00699-y

Ruiz JR, Castro-Pinero J, Espana-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based ML, O’Malley G. Muscle strength and fitness in pediatric obesity: A systematic review from the fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011; 45: 518–524. doi: 10.1136/bjsm.2010.075341

Cadenas-Sanchez C, Sanchez-Delgado G, Martinez-Tellez B, Mora-Gonzalez J, Löf M, España-Romero V, et al. Reliability and Validity of Different Models of TKK Hand Dynamometers. Am J Occup Ther. 2016;70(4):7004300010. doi: 10.5014/ajot.2016.019117

Larsen N, Krustrup P, Araújo SC, Castagna C. Accuracy and reliability of the InBody 270 multifrequency body composition analyser in 10-12-yearold children. PLoS One. 2021; 16(3): e0247362. doi: 10.1371/journal.pone.0247362

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Gloria Isabel Niño-Cruz, Elizabeth Herrera-Anaya, Edna Magaly Gamboa-Delgado

Descargas

Los datos de descargas todavía no están disponibles.