Abstract
Benford or “first digit” law has been used successfully to evaluate epidemiological surveillance systems, especially during epidemics. Conventional statistical methods for evaluation (x2 and log-likelihood ratio) are controversial when the number of data is small (n <7). In this methodological note a new test is proposed to evaluate compliance with Benford’s law with small samples, which can be used with biomedical, medical and public health data.
References
1. Morag S, Salmon-Divon M. Characterizing human cell types and tissue origin using the Benford law. Cells. 2019; 8(9): E1004. doi: http://10.3390/cells8091004.
2. Pollach G, Brunkhorst F, Mipando M, Namboya F, Mndolo S, Luiz T. The “first digit law” - A hypothesis on its possible impact on medicine and development aid. Med Hypotheses. 2016; 97:102-106. doi: http://10.1016/j.mehy.2016.10.021.
3. Pinilla J, López-Valcárcel BG, González-Martel C, Peiro S. Pinocchio testing in the forensic analysis of waiting lists: using public waiting list data from Finland and Spain for testing Newcomb-Benford’s Law. BMJ Open. 2018; 8(5): e022079. doi: http://10.1136/bmjopen-2018-022079.
4. Manrique-Hernández EF, Fernández-Niño JA, Idrovo AJ. Global performance of epidemiologic surveillance of Zika virus: rapid assessment of an ongoing epidemic. Public Health. 2017;143:14-16. doi: http://10.1016/j.puhe.2016.10.023.
5. Gómez-Camponovo M, Moreno J, Idrovo ÁJ, Páez M, Achkar M. Monitoring the Paraguayan epidemiological dengue surveillance system (2009-2011) using Benford’s law. Biomedica. 2016;36(4):583-592. doi: http://10.7705/biomedica.v36i4.2731
6. Idrovo AJ, Fernández-Niño JA, Bojórquez-Chapela I, Moreno-Montoya J. Performance of public health surveillance systems during the influenza A(H1N1) pandemic in the Americas: testing a new method based on Benford’s Law. Epidemiol Infect. 2011;139(12):1827-34. doi: http://10.1017/S095026881100015X.
7. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-733.
8. Menzel U. EMT. Exact multinomial test: goodness-of-fit test for discrete multivariate data. R package version 1.0; 2012.
9. Kuiper NH. Tests concerning random points on a circle. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Series A 1962; 63: 38-47.
2. Pollach G, Brunkhorst F, Mipando M, Namboya F, Mndolo S, Luiz T. The “first digit law” - A hypothesis on its possible impact on medicine and development aid. Med Hypotheses. 2016; 97:102-106. doi: http://10.1016/j.mehy.2016.10.021.
3. Pinilla J, López-Valcárcel BG, González-Martel C, Peiro S. Pinocchio testing in the forensic analysis of waiting lists: using public waiting list data from Finland and Spain for testing Newcomb-Benford’s Law. BMJ Open. 2018; 8(5): e022079. doi: http://10.1136/bmjopen-2018-022079.
4. Manrique-Hernández EF, Fernández-Niño JA, Idrovo AJ. Global performance of epidemiologic surveillance of Zika virus: rapid assessment of an ongoing epidemic. Public Health. 2017;143:14-16. doi: http://10.1016/j.puhe.2016.10.023.
5. Gómez-Camponovo M, Moreno J, Idrovo ÁJ, Páez M, Achkar M. Monitoring the Paraguayan epidemiological dengue surveillance system (2009-2011) using Benford’s law. Biomedica. 2016;36(4):583-592. doi: http://10.7705/biomedica.v36i4.2731
6. Idrovo AJ, Fernández-Niño JA, Bojórquez-Chapela I, Moreno-Montoya J. Performance of public health surveillance systems during the influenza A(H1N1) pandemic in the Americas: testing a new method based on Benford’s Law. Epidemiol Infect. 2011;139(12):1827-34. doi: http://10.1017/S095026881100015X.
7. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-733.
8. Menzel U. EMT. Exact multinomial test: goodness-of-fit test for discrete multivariate data. R package version 1.0; 2012.
9. Kuiper NH. Tests concerning random points on a circle. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Series A 1962; 63: 38-47.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
Download data is not yet available.