Abstract
Objective: To describe the molecular and cellular aspects of the immune response against SARS-CoV-2 and the clinical repercussions resulting from inefficient immune mechanisms. Introduction: The emergence of an atypical pneumonia in China in December 2019 led to a global confinement. The agent responsible for this new disease was named SARS-CoV-2 by the International Committee on Taxonomy of viruses, and the disease it produces was named COVID-19 by the WHO on February 11, 2020. Methodology: For this descriptive study we researched the databases of Pubmed, Science, Nature, The Lancet, The New England Journal of Medicine, medRxiv and Google Scholar; which descriptors used were: COVID-19, 2019-nCoV, SARS-CoV-2, lymphocytes, antibodies and immunity; including 128 studies in the review. Results: The most common clinical manifestations produced by SARS-CoV-2 are: fever, dry cough and fatigue, being the elderly people who are mostly having complications such as acute respiratory distress syndrome, arrhythmias, acute heart failure and septic shock. Significant decreases in NK cells, B lymphocytes, CD4+ and CD8+ T lymphocytes were identified in peripheral blood in patients with moderate and severe COVID-19 conditions. Discussion: NK cells and macrophages are responsible for viral containment and elimination in the early stages of SARS-CoV-2 infection. The relevance of the humoral response in the containment and elimination of SARS-CoV-2 is unclear. The cytotoxic T lymphocyte response is essential for the complete resolution of SARS-CoV-2 infection, as they achieve the elimination of infected cells. There is no specific antiviral treatment recommended yet for COVID-19, and there is currently no vaccine available.
References
2. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4): 536-544. doi: 10.1038/s41564-020-0695-z
3. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020; 55(3): 105924. doi:10.1016/j.ijantimicag.2020.105924
4. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020; 91(1): 157-160 pp. doi: org/10.23750/abm.v91i1.9397
5. Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More than just the common cold. JAMA. 2020; 323(8): 707-708. doi:10.1001/jama.2020.0757
6. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019; 16(1): 69. doi: 10.1186/s12985-019-1182-0
7. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy. Ninth report of the International Committee on Taxonomy of Virues. San Diego: Elsevier; 2012. p. 796-805.
8. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(3): 181-192. doi: 10.1038/s41579-018-0118-9
9. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018; 100: 163-188. doi: 10.1016/bs.aivir.2018.01.001
10. Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020; 12(2): 135. doi: 10.3390/v12020135
11. Xinyi Y, Ng Y, Tam J, Liu D. Human Coronaviruses: a review of virus–host interactions. Diseases. 2016; 4: 26. doi: 10.3390/diseases4030026
12. Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 2020; 2020; 4(4): 66-75. doi: 10.15698/cst2020.04.216
13. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019; 11(1): 59. doi: 10.3390/v11010059
14. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24: 91-98. doi: 10.1016/j.jare.2020.03.005
15. Ul Qamar MT, Alqahtani SM, Alamri MA, Chen L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020; Epub ahead of print. doi: 10.1016/j.jpha.2020.03.009
16. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4): 450-452. doi: 10.1038/s41591-020-0820-9
17. Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020; 1-9. doi: 10.1007/s10096-020-03874-z
18. Lu H, Stratton CW, Tang Y-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 2020; 92(4): 401-402. doi:10.1002/jmv.25678
19. Song H-D, Tu C-C, Zhang G-W, Wang S-Y, Zheng K, Lei L-C, et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U.S.A. 2005; 102(7): 2430-2435. doi: 10.1073/pnas.0409608102
20. Ye Z-W, Yuan S, Yuen K-S, Fung S-Y, Chan C-P, Jin D-Y. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020; 16(10): 1686-1697. doi: 10.7150/ijbs.45472
21. Zhang Y-Z, Holmes EC. A Genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020; 181(2): 223-227. doi: 10.1016/j.cell.2020.03.035
22. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76: 71-76. doi: org/10.1016/j.ijsu.2020.02.034
23. Memish ZA, Almasri M, Turkestani A, Al-Shangiti AM, Yezli S. Etiology of severe community-acquired pneumonia during the 2013 Hajj-part of the MERS-CoV surveillance program. Int J Infect Dis. 2014; 25: 186-190. doi: 10.1016/j.ijid.2014.06.003
24. Karadag E. Increase in COVID‐19 cases and case‐fatality and case‐recovery rates in Europe: a cross‐temporal meta‐analysis. J Med Virol. 2020: 10.1002/jmv.26035. doi: 10.1002/jmv.26035
25. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020; 382(13): 1199-1207. doi: 10.1056/NEJMoa2001316
26. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020; 395(10223): 514-523. doi: 10.1016/S0140-6736(20)30154-9
27. Yu P, Zhu J, Zhang Z, Han Y. A Familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. J Infect Dis. 2020; 221(11): 1757-1761. doi: 10.1093/infdis/jiaa077
28. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382(16): 1564-1567. doi: 10.1056/NEJMc2004973
29. Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al. Possible vertical transmission of sars-cov-2 from an infected mother to her newborn. JAMA. 2020; 323(18): 1846-1848 doi:10.1001/jama.2020.4621.
30. Chen Y, Peng H, Wang L, Zhao Y, Zeng L, Gao H, et al. Infants born to mothers with a new coronavirus (COVID-19). Front Pediatr. 2020; 8(104). doi: 10.3389/fped.2020.00104
31. Karimi-Zarchi M, Neamatzadeh H, Dastgheib SA, Abbasi H, Mirjalili SR, Behforouz A, et al. Vertical transmission of coronavirus disease 19 (COVID-19) from infected pregnant mothers to neonates: A review. Fetal Pediatr Pathol. 2020; 1-5. doi: 10.1080/15513815.2020.1747120
32. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet. 2020; 395(10226): 809-815. doi: 10.1016/S0140-6736(20)30360-3
33. Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020. doi:10.1038/s41591-020-0965-6
34. Ren L, Gonzalez R, Xu J, Xiao Y, Li Y, Zhou H, et al. Prevalence of human coronaviruses in adults with acute respiratory tract infections in Beijing, China. J Med Virol. 2011; 83(2): 291-297. doi: 10.1002/jmv.21956
35. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020; 26(6): 729-734. doi: 10.1016/j.cmi.2020.03.026.
36. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020; 92(6): 568-576. doi: doi.org/10.1002/jmv.25748
37. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020: e3319. doi: 10.1002/dmrr.3319
38. Wang X, Fang X, Cai Z, Wu X, Gao X, Min J, et al. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: A systemic review and meta-analysis. Research (Wash DC). 2020; 2020: 2402961. doi: 10.34133/2020/2402961
39. Chinen J, Shearer WT. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol. 2010; 125(2 Suppl 2): S195-S203. doi: 10.1016/j.jaci.2009.08.040
40. Raifman MA, Raifman JR, Julia R Raifman. Disparities in the population at risk of severe illnes from COVID-19 by income. Am J Prev Med. 2020; 59(1): 137-139. doi: 10.1016/j.amepre.2020.04.003
41. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York. JAMA. 2020; 323(20): 2052-2059. doi: 10.1001/jama.2020.6775
42. Zhang J, Wang X, Jia X, Li X, Hu K, Chen G, et al. Risk factors for Disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020; 26(6): 767-772. doi: 10.1016/j.cmi.2020.04.012
43. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus. 2020; 12(3): e7355-e. doi: 10.7759/cureus.7355.
44. Zhang J, Wang M, Zhao M, Guo S, Xu Y, Ye J, et al. The Clinical characteristics and prognosis factors of mild-moderate patients with COVID-19 in a mobile cabin hospital: A retrospective, single-center study. Front Public Health. 2020; 8(264). doi: 10.3389/fpubh.2020.00264
45. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-Infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061-1069. doi: 10.1001/jama.2020.1585
46. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395(10223): 507-13. doi: 10.1016/S0140-6736(20)30211-7
47. Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ. 2020; 368: m606. doi: 10.1136/bmj.m792
48. Ahmad I, Azam Rathore F. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci. 2020; 77: 8-12. doi: 10.1016/j.jocn.2020.05.017
49. Das G, Mukherjee N, Ghosh S. Neurological Insights of COVID-19 Pandemic. ACS Chem Neurosci. 2020; 11(9): 1206-1209. doi: 10.1021/acschemneuro.0c00201
50. Butowt R, Bilinska K. SARS-CoV-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020; 11(9): 1200-1203. doi:10.1021/acschemneuro.0c00172
51. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020; 19(5):383-384. doi: 10.1016/S1474-4422(20)30109-5
52. Du R-H, Liang L-R, Yang C-Q, Wang W, Cao T-Z, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur Respir J. 2020; 55(5): 2000524. doi: 10.1183/13993003.00524-2020
53. Aggarwal G, Lippi G, Henry BM. Cerebrovascular disease is associated with an increased disease severity in patients with coronavirus disease 2019 (COVID-19): A pooled analysis of published literature. Int J Stroke. 2020; 15(4): 385-389. doi: 10.1177/1747493020921664
54. Galván Casas C, Català A, Carretero Hernández G, Rodríguez-Jiménez P, Fernández Nieto D, Rodríguez-Villa Lario A, et al. Classification of the cutaneous manifestations of COVID-19: A rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol. 2020; 183(1): 71-77. doi: doi.org/10.1111/bjd.19163
55. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95(7): 834-847. doi: 10.1002/ajh.25829
56. Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020; 38(7): 1504-1507. doi: 10.1016/j.ajem.2020.04.048
57. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229): 1054-1062. doi: 10.1016/S0140-6736(20)30566-3
58. Pawelec G. Age and immunity: what is “immunosenescence”? Exper Gerontol. 2017; 105: 4-9. doi: 10.1016/j.exger.2017.10.024
59. Oh S-J, Lee JK, Shin OS. Aging and the immune system: The Impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 2019; 19(6): e37-e. doi: 10.4110/in.2019.19.e37
60. Pawelec G. Hallmarks of human "immunosenescence": adaptation or dysregulation? Immun Ageing. 2012; 9(1): 15. doi: 10.1186/1742-4933-9-15
61. Principi N, Bosis S, Esposito S. Effects of coronavirus infections in children. Emerg Infect Dis. 2010; 16(2): 183-188. doi: 10.321/eid1602.090469.
62. Mustafa NM, A Selim L. Characterisation of COVID-19 pandemic in paediatric age group: A systematic review. J Clin Virol. 2020; 104395. doi:10.1016/j.jcv.2020.104395
63. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2): 281-292. doi: 10.1016/j.cell.2020.02.058
64. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5(4): 562-569. doi: 10.1038/s41564-020-0688-y
65. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260-1263. doi: 10.1126/science.abb2507
66. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J Virol. 2020; 94(7): e00127-20. doi: 10.1128/JVI.00127-20
67. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018; 419: 1-42. doi: 10.1007/82_2017_25
68. Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res. 2015; 206: 120-133. doi: 10.1016/j.virusres.2015.02.025
69. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282: 1-23. doi: 10.1007/978-1-4939-2438-7_1
70. Kumar S, Nyodu R, Maurya VK, Saxena SK. Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). In: Saxena SK, editor. Coronavirus Disease 2019 (COVID-19). Singapore: Springer Singapore; 2020; 23-31. doi: 10.1007/978-981-15-4814-7_3
71. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020; 92(6): 584-588
72. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018; 149: 58-74. doi: 10.1002/jmv.25719
73. Cagno V. SARS-CoV-2 cellular tropism. Lancet Microbe. 2020; 1(1): e2-e3. doi: 10.1016/S2666-5247(20)30008-2
74. Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol. 2018; 11(1): 21-34. doi: 10.1038/mi.2017.71
75. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-432. doi: 10.1002/jmv.25685
76. Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016; 38(4): 471-482. doi: 10.1007/s00281-016-0558-0
77. Hiemstra PS, Mc Cray PB, Jr. Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J. 2015; 45(4): 1150-1162. doi: 10.1183/09031936.00141514
78. Weitnauer M, Mijošek V, Dalpke AH. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2016; 9(2): 287-298. doi: 10.1038/mi.2015.126
79. Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol. 2018; 48(10): 1607-1620. doi: 10.1002/eji.201646789
80. Gordon SB, Read RC. Macrophage defences against respiratory tract infections: The immunology of childhood respiratory infections. Br Med Bull British. 2002; 61(1): 45-61. doi: 10.1093/bmb/61.1.45
81. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420-422. doi: 10.1016/S2213-2600(20)30076-X
82. Liang Y, Wang M-L, Chien C-S, Yarmishyn AA, Yang Y-P, Lai W-Y, et al. Highlight of immune pathogenic response and hematopathologic effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Front Immunol. 2020; 11(1022). doi: 10.3389/fimmu.2020.01022
83. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012; 76(1): 16-32. doi: 10.1128/MMBR.05015-11
84. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20(6): 363-374. doi: 10.1038/s41577-020-0311-8
85. Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int J Antimicrob Agents. 2020; 55(6) 105982. doi: 10.1016/j.ijantimicag.2020.105982
86. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473-474. doi: 10.1126/science.abb8925
87. Abel AM, Yang C, Thakar MS, Malarkannan S. natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018; 9: 1869. doi: 10.3389/fimmu.2018.01869
88. Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, Karmele EP, et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 2016; 16: 15-23. doi: 10.1016/j.coviro.2015.10.008
89. Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 2019; 105(6): 1319-1329. doi: 10.1002/jlb.mr0718-269r.
90. Kang S, Brown HM, Hwang S. Direct antiviral mechanisms of interferon-gamma. Immune Netw. 2018; 18(5): e33-e. doi: 10.4110/in.2018.18.e33.
91. He R, Lu Z, Zhang L, Fan T, Xiong R, Shen X, et al. The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol. 2020;127:104361. doi: 10.1016/j.jcv.2020.104361
92. Silvin A, Yu CI, Lahaye X, Imperatore F, Brault J-B, Cardinaud S, et al. Constitutive resistance to viral infection in human CD141+ dendritic cells. Sci Immunol. 2017; 2(13): eaai8071. doi: 10.1126/sciimmunol.aai8071
93. Bedoui S, Gebhardt T. Interaction between dendritic cells and T cells during peripheral virus infections: a role for antigen presentation beyond lymphoid organs? Curr Opin Immunol. 2011; 23(1): 124-130. doi: 10.1016/j.coi.2010.11.001
94. Kumar S, Nyodu R, Maurya VK, Saxena SK. Host immune response and immunobiology of human SARS-CoV-2 Infection. Coronavirus Disease 2019 (COVID-19). 2020: 43-53. doi: 10.1007/978-981-15-4814-7_5
95. di Mauro G, Cristina S, Concetta R, Francesco R, Annalisa C. SARS-Cov-2 infection: Response of human immune system and possible implications for the rapid test and treatment. Int Immunopharmacol. 2020; 84: 106519. doi: 10.1016/j.intimp.2020.106519
96. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020: ciaa344. doi: 10.1093/cid/ciaa344.
97. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020; 221(11): 1762-9. doi: 10.1093/infdis/jiaa150
98. Zhang Y, Xu J, Jia R, Yi C, Gu W, Liu P, et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cell Mol Immunol. 2020. doi: 10.1038/s41423-020-0438-3
99. Astuti I, Ysrafil. Severe Acute respiratory syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020; 14(4): 407-412. doi: 10.1016/j.dsx.2020.04.020
100. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020; 3(3): 368-370. doi: 10.1016/j.jmii.2020.03.005
101. Janice Oh H-L, Ken-En Gan S, Bertoletti A, Tan Y-J. Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect. 2012; 1(9): e23-e. doi: 10.1038/emi.2012.26
102. Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014; 59(1-3): 118-128. doi: 10.1007/s12026-014-8534-z
103. Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol. 2009; 6(1): 15-25. doi: 10.1038/cmi.2009.3
104. Ito H, Seishima M. Regulation of the induction and function of cytotoxic T lymphocytes by natural killer T cell. J Biomed Biotechnol. 2010; 2010: 641757. doi: 10.1155/2010/641757
105. Jiang M, Guo Y, Luo Q, Huang Z, Zhao R, Liu S, et al. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19. J Infect Dis. 2020; 222(2): 198-202: doi: 10.1093/infdis/jiaa252
106. Peng F, Tu L, Yang Y, Hu P, Wang R, Hu Q, et al. Management and treatment of COVID-19: The Chinese experience. Can J Cardiol. 2020; 36(6): 915-930. doi: 10.1016/j.cjca.2020.04.010
107. Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care. 2020; 24(1): 91. doi: 10.1186/s13054-020-2818-6
108. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, et al. Treatment with convalescent plasma for critically Ill patients with SARS-CoV-2 infection. Chest. 2020; 158(1): e9-e13. doi: 10.1016/j.chest.2020.03.039
109. Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020. doi: 10.1002/jmv.25882
110. Nguyen AA, Habiballah SB, Platt CD, Geha RS, Chou JS, McDonald DR. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin Immunol. 2020; 216 108459. doi: 10.1016/j.clim.2020.108459
111. Li L, Li R, Wu Z, Yang X, Zhao M, Liu J, et al. Therapeutic strategies for critically ill patients with COVID-19. Ann Intensive Care. 2020; 10(1): 45. doi: 10.1186/s13613-020-00661-z
112. Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020: 105951. doi: 10.1016/j.ijantimicag.2020.105951.
113. Jean S-S, Lee P-I, Hsueh P-R. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 2020; 53(3): 436-443. doi: 10.1016/j.jmii.2020.03.034
114. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59(3): 252. doi: 10.1136/thorax.2003.012658
115. Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020; 178: 104786. doi: 10.1016/j.antiviral.2020.104786
116. Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020; 55(4): 105932. doi: 10.1016/j.ijantimicag.2020.105932
117. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020; 34: 101663. doi: 10.1016/j.tmaid.2020.101663
118. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020; 382(24): 2327-2336. doi:10.1056/NEJMoa2007016.ç
119. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020; 395(10236): 1569-1578. doi: 10.1016/S0140-6736(20)31022-9
120. Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of ebola virus rna-dependent RNA polymerase by Remdesivir. Viruses. 2019; 11(4): 326. doi: 10.3390/v11040326
121. Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020; 55(5): 105954. doi: 10.1016/j.ijantimicag.2020.105954
122. Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA Approval summary: Tocilizumab for treatment of chimeric antigen receptor T Cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018; 23(8): 943-947. doi: 10.1634/theoncologist.2018-0028
123. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020; 20(4): 400-402. doi: 10.1016/S1473-3099(20)30132-8
124. Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19(7): 102567. doi: 10.1016/j.autrev.2020.102567
125. Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. 2020; 20048561. doi: 10.1101/2020.04.01.20048561
126. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; Epub ahead of print. doi: 10.1016/j.jinf.2020.04.017
127. Sallard E, Lescure F-X, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral research. 2020; 178: 104791. doi: 10.1016/j.antiviral.2020.104791
128. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020; 178: 104787. doi: 10.1016/j.antiviral.2020.104787
129. Bray M, Rayner C, Noël F, Jans D, Wagstaff K. Ivermectin and COVID-19: A report in antiviral research, widespread interest, an FDA warning, two letters to the editor and the authors' responses. Antiviral Res. 2020: 104805. doi: 10.1016/j.antiviral.2020.104805
130. Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C, Giotaki SG, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic J Cardiol. 2020; S1109-9666(20)30061-0. doi: 10.1016/j.hjc.2020.03.002
Se autoriza la reproducción total o parcial de la obra para fines educativos, siempre y cuando se cite la fuente.
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Pública Internacional.