Analysis of the relationship between particulate material, quarantine, and COVID-19 in a Colombian Caribbean city
pdf (Español (España))

How to Cite

Wilches-Visbal, J. H., & Castillo-Pedraza, M. C. (2021). Analysis of the relationship between particulate material, quarantine, and COVID-19 in a Colombian Caribbean city. Salud UIS, 53. https://doi.org/10.18273/saluduis.53.e:21032

Abstract

Introduction: Long and short-term exposure to certain concentrations of environmental pollutants seems to influence the spread and worsening of COVID-19. On the other hand, it has been hypothesized that quarantines have a positive effect on air quality. Objective: To examine the concentration of particulate material 10 (CPM10) in the last five years, in pre-quarantine and post-quarantine months of 2020 and the impact of the quarantine on CPM10 in Santa Marta (Colombia). Materials and Methods: Retrospective longitudinal study of CPM10 on a sample of five environmental monitoring stations, period 2016-2020. CPM10 distributions were calculated for each year and season, as well as between months before and after quarantine. Results: A statistically significant reduction of 34% in CPM10 was evidenced in 2020 compared to the previous four years. CPM10 of post-quarantine months decreased 40% in comparison with the pre-quarantine months. There were no significant differences in CPM10 between the stations, although median values of CPM10 were higher in the southern stations. CPM10 from 2016- 2020 (long term) and in pre-quarantine months (short term) exceeded the limits of increased risk of morbidity and mortality from COVID-19 established in previous international studies. Conclusion: The quarantine had a positive impact on the air quality in Santa Marta. However, CPM10 levels found in the long and short term could have predisposed the population to infection and death from the virus.

https://doi.org/10.18273/saluduis.53.e:21032
pdf (Español (España))

References

Baldasano JM. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci Total Environ. 2020; 741: 140353. doi: https://doi.org/10.1016/j.scitotenv.2020.140353

Liang D, Shi L, Zhao J, Liu P, Sarnat JA, Gao S, et al. Urban air pollution may enhance COVID-19 Case-Fatality and mortality rates in the United States. Innov. 2020; 1(3): 100047. doi: https://doi.org/10.1016/j.xinn.2020.100047

Lacy-Niebla MC. El cambio climático y la pandemiade COVID-19. Arch Cardiol México. 2021; 91(3). doi: https://doi.org/10.24875/ACM.M21000076

Organización Mundial de la Salud (OMS). Weekly epidemiological update on COVID-19. 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-june-2021

Worldometers. COVID-19 Coronavirus Pandemic. 2021. https://www.worldometers.info/coronavirus/?zarsrc=130

Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019; 19(1): 101. doi: https://doi.org/10.1186/s12879-019-3707-y

Wilches-Visbal JH, Castillo-Pedraza MC. Principios físicos y medidas de mitigación asociadas a la transmisión por aerosol del SARS-COV-2. Rev Cuba Med Gen Integr. 2021; 37(Sup): e1908.

Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 2021; 397(10285): 1603-1605. doi: https://doi.org/10.1016/S0140-6736(21)00869-2

Seminara G, Carli B, Forni G, Fuzzi S, Mazzino A, Rinaldo A. Biological fluid dynamics of airborne COVID-19 infection. Rend Lincei Sci Fis Nat. 2020; 31(3): 505-537. doi: https://doi.org/10.1007/s12210-020-00938-2

Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Reese AL, et al. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on Surfaces. mSphere. 2020; 5(4): 1-9. doi: https://doi.org/10.1128/mSphere.00441-20

Comunian S, Dongo D, Milani C, Palestini P. Air pollution and COVID-19: The role of particulate matter in the spread and increase of COVID- 19’s morbidity and mortality. Int J Environ Res Public Health. 2020; 17(12): 4487. doi: https://doi.org/10.3390/ijerph17124487

Zhao L, Qi Y, Luzzatto-Fegiz P, Cui Y, Zhu Y. COVID-19: Effects of environmental conditions on the propagation of respiratory droplets. Nano Lett. 2020; 20(10): 7744-7750. doi: https://doi.org/10.1021/acs.nanolett.0c03331

Magazzino C, Mele M, Schneider N. The relationship between air pollution and COVID-19- related deaths: An application to three French cities.Appl Energy. 2020; 279: 115835. doi: https://doi.org/10.1016/j.apenergy.2020.115835

Medina Palacios EK. La contaminación del aire, un problema de todos. Rev Fac Med. 2019; 67(2): 189-191. doi: https://doi.org/10.15446/revfacmed.v67n2.82160

Pizzorno J, Crinnion W. Particulate matter is a surprisingly common contributor to disease. Integr Med. 2017; 16(4): 8-12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415634/

Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, et al. Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med. 2019; 381(8): 705-715. doi: https://doi.org/10.1056/NEJMoa1817364

Arregocés HA, Rojano R, Restrepo G. Impact of lockdown on particulate matter concentrations in Colombia during the COVID-19 pandemic. Sci Total Environ. 2021; 764(En prensa): 142874. doi: https://doi.org/10.1016/j.scitotenv.2020.142874

Ali N, Islam F. The eeffects of air pollution on COVID-19 infection and mortality—A review on recent evidence. Front Public Heal. 2020; 8: 580057. doi: https://doi.org/10.3389/fpubh.2020.580057

Ljungman PLS, Li W, Rice MB, Wilker EH, Schwartz J, Gold DR, et al. Long- and short-term air pollution exposure and measures of arterial stiffness in the Framingham Heart Study. Environ Int. 2018; 121: 139-147. doi: https://doi.org/10.1016/j.envint.2018.08.060

Hutter HP, Poteser M, Moshammer H, Lemmerer K, Mayer M, Weitensfelder L, et al. Air pollution is associated with COVID-19 incidence and mortality in Vienna, Austria. Int J Environ Res Public Health. 2020; 17(24): 9275. doi: https://doi.org/10.3390/ijerph17249275

Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395(10235): 1517-1520. doi: https://doi.org/10.1016/S0140-6736(20)30920-X

El-Sheekh MM, Hassan IA. Lockdowns and reduction of economic activities during the COVID-19 pandemic improved air quality in Alexandria, Egypt. Environ Monit Assess. 2021; 193(1): 11. doi: https://doi.org/10.1007/s10661-020-08780-7

Organización Mundial de la Salud (OMS). Calidad del aire y salud. 2018. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

Pérez-Cardenas JE. La calidad del aire en colombia: un problema de salud pública, un problema de todos. Biosalud. 2017; 16(2): 5-6. doi: https://doi.org/10.17151/biosa.2017.16.2.1

Ministerio de Ambiente y Desarrollo Sostenible. Resolución 2254 de 2017. Bogotá, Colombia; 2017. https://www.minambiente.gov.co/images/normativa/app/resoluciones/96-res 2254 de 2017.pdf

California Environmental Protection Agency. Air Quality Standards and Attainment Status. 2015. https://www.baaqmd.gov/about-air-quality/research-and-data/air-quality-standards-andattainment-status

Unión Europea. Air Quality Standards. 2008. https://ec.europa.eu/environment/air/quality/standards.htm

Instituto de efectividad clínica y sanitaria. Intervenciones no farmacológicas de salud pública en la pandemia por COVID-19. 2020. https://docs.bvsalud.org/biblioref/2020/06/1100252/iecs-irr-775-va-intervenciones-no-farmacologicas-covid-19-1.pdf

López-Feldman A, Chávez C, Vélez MA, Bejarano H, Chimeli AB, Féres J, et al. COVID-19: impactos en el medio ambiente y en el cumplimiento de los ODS en América Latina. Rev Desarro Soc. 2020; 86:104-132. doi: https://doi.org/10.13043/DYS.86.4

Rodríguez-Urrego D, Rodríguez-Urrego L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ Pollut. 2020; 266: 115042. doi: https://doi.org/10.1016/j.envpol.2020.115042

Banco de la República. Composición de la economía de la región Caribe de Colombia. 2013. https://www.banrep.gov.co/es/node/31792

Candanoza S, Goribar L, García F. Relación particulas respirables (PM10)/ particulas suspendidas totales (PST) en Santa Marta (Colombia). DYNA. 2013; 80(179): 157-164. https://revistas.unal.edu.co/index.php/dyna/article/view/32239/40660

Camargo-Caicedo Y, Mantilla-Romo LC, Bolaño-Ortiz TR. Emissions reduction of greenhouse gases, ozone precursors, aerosols and acidifying gases from road transportation during the COVID-19 lockdown in Colombia. Appl Sci. 2021; 11(4): 1458. doi: https://doi.org/10.3390/app11041458

Mendez-Espinosa JF, Rojas NY, Vargas J, Pachón JE, Belalcazar LC, Ramírez O. Air quality variations in Northern South America during the COVID-19 lockdown. Sci Total Environ. 2020; 749: 141621. doi: https://doi.org/10.1016/j.scitotenv.2020.141621

Corporación Autónoma Regional del Magdalena (CORPAMAG). Información monitoreo calidad de aire. 2020. https://www.corpamag.gov.co/index. php/es/informacion-ambiental/aire/monitoreo-aire

Corporación Autónoma Regional del Magdalena (CORPAMAG). Calidad de Aire en el Departamento del Magdalena. Datos Abiertos Gobierno de Colombia. 2020. https://www.datos.gov.co/Ambientey-Desarrollo-Sostenible/Monitoreo-Calidad-de-Airedepartamento-del-Magdale/dgnf-6h7v

Rana R, Singhal R, Dua P. Deciphering the dilemma of parametric and nonparametric tests. J Pract Cardiovasc Sci. 2016; 2(2): 95. doi: https://doi.org/10.4103/2395-5414.191521

Mercado L. El 1o de septiembre termina cuarentena y empieza aislamiento selectivo. El Tiempo. 2020. https://www.eltiempo.com/politica/gobierno/ivanduque-anuncia-aislamiento-selectivo-desde-elprimero-de-septiembre-532872

Sarmiento AT, Guerra AP, Cortés AN. COVID-19: Análisis e impacto en la ciudad de Santa Marta. Barranquilla, Colombia; 2020. https://www.uninorte.edu.co/documents/81451/0/ANÁLISIS+COVID+STA+MARTA/2936e92a-bb2e-4758-b493-85ee13a9c75a

Diazgranados M, Morales, Lady, Sandra P. Análisis de la calidad del aire en Santa Marta por efectos del polvillo de carbón en zonas portuarias a partir de un Modelo de predicción espaciotemporal. Universidad Distrital «Francisco Joséde Caldas»; 2015.

Montoya-Rendon ML, Zapata-Saldarriaga PM, Correa-Ochoa MA. Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia. Rev Salud Publica. 2013; 15(1): 103-115.

Gupta A, Bherwani H, Gautam S, Anjum S, Musugu K, Kumar N, et al. Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models. Environ Dev Sustain. 2021; 23(4): 6408-6417. doi: https://doi.org/10.1007/s10668-020-00878-9

Alcaldía Distrital de Santa Marta. Decretos. 2020. https://www.santamarta.gov.co/tags/decretos?page=8

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Jorge Homero Wilches-Visbal, Midian Clara Castillo-Pedraza

Downloads

Download data is not yet available.