Abstract
Introduction: Obesity is considered a risk factor for developing insulin resistance. The increase in adipose tissue has been related to the increase in the production of pro-inflammatory cytokines, which together with fatty acids are responsible, at least in part, for the development of insulin resistance, and this in turn facilitates the development of T2 diabetes mellitus type 2 (DMT2). Objective: The purpose of this study was to perform and characterize an in vitro model of obesity using high concentrations of glucose and insulin on an adipocyte cell line. Methods: A cell hypertrophy model was induced by stimulating mature adipocytes with a concentration of glucose (450 mg/ dL) and insulin (106 pmol/L) (HGHI model). The cell viability, cell diameter, lipid mobilization and insulin signalling markers were evaluated. Results: After HGHI treatment, adipocytes show hypertrophy, increase in lipid accumulation, reduction of lipid breakdown, alteration of insulin signalling, a tendency to modify proteins of reticulum stress markers and, oxidative stress. Conclusion: These results demonstrate a new in vitro model that simulates, at least in part, obesity associated with insulin resistance being a useful tool to study the mechanisms of susceptibility to obesity and insulin resistance induced in vitro by different
References
Abarca L, Abdeen Z, Hamid Z, Abu N, Acosta B, Acuin C. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017; 390(10113): 2627-2642. doi:10.1016/S0140-6736(17)32129-3
Zatterale F, Longo M, Naderi J, Raciti G, Desiderio A, Miele C. et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol. 2020; 10. doi: https://doi.org/10.3389/fphys.2019.01607
Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015; 16(2): 127-136. doi: https://doi.org/10.1111/obr.12242
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti G. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019; 20(9). doi: https://doi.org/10.3390/ijms20092358
Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka T. et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005; 280(1): 847-851. doi: https://doi.org/10.1074/jbc.M411860200
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science (80- ). 2005; 307(5708): 384-387. doi: https://doi.org/10.1126/science.1104343
Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP. et al. The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species. J Biol Chem. 2005; 280(6): 4617-4626. doi: https://doi.org/10.1074/jbc.M411863200
Li A, Liu J, Ding F, Wu X, Pan C, Wang Q. et al. Maca extracts regulate glucose and lipid metabolism in insulin-resistant HepG2 cells via the PI3K/AKT signalling pathway. Food Sci Nutr. 2021; 9(6): 2894-2907. doi: https://doi.org/10.1002/fsn3.2246
Lo KA, Labadorf A, Kennedy NJ, Han MS, Yap YS, Matthews B. et al. Analysis of In Vitro Insulinresistance models and their physiological relevance to InVivo diet-induced adipose insulin resistance. Cell Rep. 2013; 5(1): 259-270. doi: https://doi.org/10.1016/j.celrep.2013.08.039
Reed MJ, Scribner KA. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes, Obes Metab. 1999; 1(2): 75-86. doi: https://doi.org/10.1046/j.1463-1326.1999.00014.x
Monickaraj F, Aravind S, Nandhini P, Prabu P, Sathishkumar C, Mohan V. et al. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J Biosci. 2013; 38(1): 113-122. doi: https://doi.org/10.1007/s12038-012-9289-0
Moreno-Castellanos N, Rodríguez A, Rabanal-Ruiz Y, Fernández-Vega A, López-Miranda J, Vázquez-Martínez R. et al. The cytoskeletal protein septin 11 is associated with human obesity and is involved in adipocyte lipid storage and metabolism. Diabetologia. 2017; 60(2): 324-335. doi: https://doi.org/10.1007/s00125-016-4155-5
Mantilla G, Ángel A, Moreno N. Effects of oleic ( 180 ) fatty acids on the metabolic state of adipocytes. Salud UIS. 2021. 53: e21009. doi: https://doi.org/10.18273/saluduis.53.e:21009
Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018; 120(3): 159-167. doi: https://doi.org/10.1016/j.acthis.2018.02.005
Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A,Rosano G. et al. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem. 2010; 110(3): 564-572. doi: https://doi.org/10.1002/jcb.22598
Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 2013; 141(3): 2896-2905. doi: https://doi.org/10.1016/j.foodchem.2013.05.121
Chan P-C, Hsieh P-S. The role of adipocyte hypertrophy and hypoxia in the development of obesity-associated adipose tissue inflammation and insulin resistance. Adiposity - Omi Mol Underst. 2017. doi: https://doi.org/10.5772/65458
Sullivan J, Brocklehurst K, Marley A, Carey F, Carling D, Beri R. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994; 353: 33-36. doi: https://doi.org/10.1016/0014-5793(94)01006-4
Stöckli J, Fazakerley DJ, James DE. GLUT4 exocytosis. J Cell Sci. 2011; 124(24): 4147-4159. doi: https://doi.org/10.1242/jcs.097063
Manning BD, Cantley LC. AKT/PKB Signaling: Navigating downstream. Cell. 2007; 129(7): 1261-1274. doi: https://doi.org/10.1016/j.cell.2007.06.009
Patel N, Huang C, Klip A. Cellular location of insulin-triggered signals and implications for glucose uptake. Pflugers Arch Eur J Physiol. 2006; 451(4): 499-510. doi: https://doi.org/10.1007/s00424-005-1475-6
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414(6865): 799-806. doi: https://doi.org/10.1038/414799a
Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K. et al. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem. 1995; 270(35): 20801-20807. doi: https://doi.org/10.1074/jbc.270.35.20801
Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003; 278(5): 2896-2902. doi: https://doi.org/10.1074/jbc.M208359200
Chang L, Chiang SH, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol Med. 2004; 10(7-12): 65-71. doi: https://doi.org/10.2119/2005-00029.Saltiel
Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee A. et al. Endoplasmic reticulum stress. Ann N Y Acad Sci. 2007; 1113: 58-71. doi: https://doi.org/10.1196/annals.1391.007
Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H. et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 Diabetes. Cell Metab. 2020; 32(5): 844-859.e5. doi: https://doi.org/10.1016/j.cmet.2020.08.007
Xuguang H, Aofei T, Tao L, Longyan Z, Weijian B, Jiao G. Hesperidin ameliorates insulin resistance by regulating the IRS1-GLUT2 pathway via TLR4 in HepG2 cells. Phyther Res. 2019;33(6):1697-1705. doi: https://doi.org/10.1002/ptr.6358
Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29(1):42-61. doi: https://doi. org/10.1210/er.2007-0015
Guerrero-Hernández A, Leon-Aparicio D, Chavez-Reyes J, Olivares-Reyes JA, De Jesus S. Endoplasmic reticulum stress in insulin resistance and diabetes. Cell Calcium. 2014; 56(5): 311-322. doi: https://doi.org/10.1016/j.ceca.2014.08.006
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Alberto Ángel-Martín, Katherin Bonilla-Carvajal, Natalia Moreno-Castellanos