Hypertrophy and insulin resistance in an in vitro model of obesity and T2DM induced by high glucose and insulin
PDF (Español (España))

Keywords

Adipocitos
Lipogénesis
Lipólisis
Glucosa
Insulina

How to Cite

Bonilla-Carvajal, K., Ángel-Martín, A., & Moreno-Castellanos, N. (2022). Hypertrophy and insulin resistance in an in vitro model of obesity and T2DM induced by high glucose and insulin. Salud UIS, 54. https://doi.org/10.18273/saluduis.54.e:22012

Abstract

Introduction: Obesity is considered a risk factor for developing insulin resistance. The increase in adipose  tissue has been related to the increase in the production of pro-inflammatory cytokines, which together with fatty acids are responsible, at least in part, for the development of insulin resistance, and this in turn facilitates the development of T2 diabetes mellitus type 2 (DMT2). Objective: The purpose of this study was to perform and characterize an in vitro model of obesity using high concentrations of glucose and insulin on an adipocyte cell line. Methods: A cell hypertrophy model was induced by stimulating mature adipocytes with a concentration of glucose (450 mg/ dL) and insulin (106 pmol/L) (HGHI model). The cell viability, cell diameter, lipid mobilization and insulin signalling markers were evaluated. Results: After HGHI treatment, adipocytes show hypertrophy, increase in lipid accumulation, reduction of lipid breakdown, alteration of insulin signalling, a tendency to modify proteins of reticulum stress markers and, oxidative stress. Conclusion: These results demonstrate a new in vitro model that simulates, at least in part, obesity associated with insulin resistance being a useful tool to study the mechanisms of susceptibility to obesity and insulin resistance induced in vitro by different

https://doi.org/10.18273/saluduis.54.e:22012
PDF (Español (España))

References

Abarca L, Abdeen Z, Hamid Z, Abu N, Acosta B, Acuin C. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017; 390(10113): 2627-2642. doi:10.1016/S0140-6736(17)32129-3

Zatterale F, Longo M, Naderi J, Raciti G, Desiderio A, Miele C. et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol. 2020; 10. doi: https://doi.org/10.3389/fphys.2019.01607

Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015; 16(2): 127-136. doi: https://doi.org/10.1111/obr.12242

Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti G. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019; 20(9). doi: https://doi.org/10.3390/ijms20092358

Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka T. et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005; 280(1): 847-851. doi: https://doi.org/10.1074/jbc.M411860200

Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science (80- ). 2005; 307(5708): 384-387. doi: https://doi.org/10.1126/science.1104343

Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP. et al. The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species. J Biol Chem. 2005; 280(6): 4617-4626. doi: https://doi.org/10.1074/jbc.M411863200

Li A, Liu J, Ding F, Wu X, Pan C, Wang Q. et al. Maca extracts regulate glucose and lipid metabolism in insulin-resistant HepG2 cells via the PI3K/AKT signalling pathway. Food Sci Nutr. 2021; 9(6): 2894-2907. doi: https://doi.org/10.1002/fsn3.2246

Lo KA, Labadorf A, Kennedy NJ, Han MS, Yap YS, Matthews B. et al. Analysis of In Vitro Insulinresistance models and their physiological relevance to InVivo diet-induced adipose insulin resistance. Cell Rep. 2013; 5(1): 259-270. doi: https://doi.org/10.1016/j.celrep.2013.08.039

Reed MJ, Scribner KA. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes, Obes Metab. 1999; 1(2): 75-86. doi: https://doi.org/10.1046/j.1463-1326.1999.00014.x

Monickaraj F, Aravind S, Nandhini P, Prabu P, Sathishkumar C, Mohan V. et al. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J Biosci. 2013; 38(1): 113-122. doi: https://doi.org/10.1007/s12038-012-9289-0

Moreno-Castellanos N, Rodríguez A, Rabanal-Ruiz Y, Fernández-Vega A, López-Miranda J, Vázquez-Martínez R. et al. The cytoskeletal protein septin 11 is associated with human obesity and is involved in adipocyte lipid storage and metabolism. Diabetologia. 2017; 60(2): 324-335. doi: https://doi.org/10.1007/s00125-016-4155-5

Mantilla G, Ángel A, Moreno N. Effects of oleic ( 180 ) fatty acids on the metabolic state of adipocytes. Salud UIS. 2021. 53: e21009. doi: https://doi.org/10.18273/saluduis.53.e:21009

Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018; 120(3): 159-167. doi: https://doi.org/10.1016/j.acthis.2018.02.005

Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A,Rosano G. et al. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem. 2010; 110(3): 564-572. doi: https://doi.org/10.1002/jcb.22598

Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 2013; 141(3): 2896-2905. doi: https://doi.org/10.1016/j.foodchem.2013.05.121

Chan P-C, Hsieh P-S. The role of adipocyte hypertrophy and hypoxia in the development of obesity-associated adipose tissue inflammation and insulin resistance. Adiposity - Omi Mol Underst. 2017. doi: https://doi.org/10.5772/65458

Sullivan J, Brocklehurst K, Marley A, Carey F, Carling D, Beri R. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994; 353: 33-36. doi: https://doi.org/10.1016/0014-5793(94)01006-4

Stöckli J, Fazakerley DJ, James DE. GLUT4 exocytosis. J Cell Sci. 2011; 124(24): 4147-4159. doi: https://doi.org/10.1242/jcs.097063

Manning BD, Cantley LC. AKT/PKB Signaling: Navigating downstream. Cell. 2007; 129(7): 1261-1274. doi: https://doi.org/10.1016/j.cell.2007.06.009

Patel N, Huang C, Klip A. Cellular location of insulin-triggered signals and implications for glucose uptake. Pflugers Arch Eur J Physiol. 2006; 451(4): 499-510. doi: https://doi.org/10.1007/s00424-005-1475-6

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414(6865): 799-806. doi: https://doi.org/10.1038/414799a

Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K. et al. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem. 1995; 270(35): 20801-20807. doi: https://doi.org/10.1074/jbc.270.35.20801

Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003; 278(5): 2896-2902. doi: https://doi.org/10.1074/jbc.M208359200

Chang L, Chiang SH, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol Med. 2004; 10(7-12): 65-71. doi: https://doi.org/10.2119/2005-00029.Saltiel

Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee A. et al. Endoplasmic reticulum stress. Ann N Y Acad Sci. 2007; 1113: 58-71. doi: https://doi.org/10.1196/annals.1391.007

Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H. et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 Diabetes. Cell Metab. 2020; 32(5): 844-859.e5. doi: https://doi.org/10.1016/j.cmet.2020.08.007

Xuguang H, Aofei T, Tao L, Longyan Z, Weijian B, Jiao G. Hesperidin ameliorates insulin resistance by regulating the IRS1-GLUT2 pathway via TLR4 in HepG2 cells. Phyther Res. 2019;33(6):1697-1705. doi: https://doi.org/10.1002/ptr.6358

Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29(1):42-61. doi: https://doi. org/10.1210/er.2007-0015

Guerrero-Hernández A, Leon-Aparicio D, Chavez-Reyes J, Olivares-Reyes JA, De Jesus S. Endoplasmic reticulum stress in insulin resistance and diabetes. Cell Calcium. 2014; 56(5): 311-322. doi: https://doi.org/10.1016/j.ceca.2014.08.006

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Alberto Ángel-Martín, Katherin Bonilla-Carvajal, Natalia Moreno-Castellanos

Downloads

Download data is not yet available.