Validity and reliability of an instrument to identify factors that influence adherence to treatment in people with cardiovascular risk factors
PDF (Español (España))

Keywords

Risk factors; Compliance and adherence to treatment; Pharmacotherapy; cardiovascular diseases; psychometry; surveys and questionnaires

How to Cite

Herrera-Guerra, E., Bautista-Arellanos, L. R., & Bonilla-Ibañez , C. P. (2023). Validity and reliability of an instrument to identify factors that influence adherence to treatment in people with cardiovascular risk factors. Salud UIS, 55. https://doi.org/10.18273/saluduis.55.e:23052

Abstract

Introduction: It is necessary to have valid and reliable instruments to identify the factors that influence adherence to treatment in people with cardiovascular risk factors. In Colombia, Bonilla y Gutierrez designed an instrument that has face and content validity. However, construct validity has not been demonstrated. Objective: To determine the construct validity and reliability of the instrument, factors that influence adherence to pharmacological and nonpharmacological treatment in people with cardiovascular risk factors. Methodology: Methodological research. A total of 694 people with risk factors for cardiovascular disease residing in three Colombian cities (Neiva, Espinal and Tunja) participated. Exploratory factor analysis (extraction of principal components and Varimax rotation), confirmatory factor analysis (maximum likelihood estimation) and global and dimensional reliability test (Cronbach’s alpha and Test-retest) were performed. Results: The exploratory factor analysis reported a 30-item instrument with a 4-factor structure (total cumulative variance of 42.6%). The fit indices of the proposed model indicated excellent absolute fit and acceptable incremental fit. The overall Cronbach’s alpha was 0.86, indicating high reliability. Discussion: The study provides evidence of a more robust instrument than other versions. Standardized instruments to measure factors that influence adherence can be very useful for research and practice if they meet psychometric tests of reliability and validity. Conclusion: A valid and reliable instrument is made available to researchers and health personnel. Its use is recommended in populations similar to that of this study.

https://doi.org/10.18273/saluduis.55.e:23052
PDF (Español (España))

References

GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet [Internet]. 2018; 392(10159): 1859–1922. doi: https://doi.org/10.1016/S0140-6736(18)32335-3

Simon ST, Kini V, Levy AE, Ho PM. Medication adherence in cardiovascular medicine BMJ. 2021; 374: n1493. doi: https://doi.org/10.1136/bmj.n1493

Scialli AR, Saavedra K, Fugh-Berman A. The benefits and risks of adherence to medical therapy. JoSPI [Internet]. 2021; 3(1). doi: 10.35122/001c.21386

World Health Organization, Sabaté E. [Internet]. Adherence to long-term therapies: evidence for action. Geneva: WHO; 2003. Disponible en: https://apps.who.int/iris/handle/10665/42682

Lauffenburger JC, Isaac T, Bhattacharya R, Sequist TD, Gopalakrishnan C, Choudhry NK. Prevalence and impact of having multiple barriers to medication adherence in nonadherent patients with poorly controlled cardiometabolic disease. Am J Cardiol. 2020; 125(3): 376-382. doi: https://doi.org/10.1016/j.amjcard.2019.10.043

Tomaszewski M, White C, Patel P, Masca N, Damani R, Hepworth J. et al. High rates of nonadherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Hear. 2014; 100(11): 855-861. doi: https://doi.org/10.1136/heartjnl-2013-305063

Fanaroff AC, Peterson ED, Kaltenbach LA, Cannon CP, Choudhry NK, Henry TD, et al. Agreement and accuracy of medication persistence identified by patient self-report vs pharmacy fill: A secondary analysis of the cluster randomized ARTEMIS Trial. JAMA Cardiol. 2020; 5(5): 532-539. doi: 10.1001/jamacardio.2020.0125

Bonilla-Ibañez CP. Diseño de un instrumento para evaluar los factores que influyen en la adherencia a tratamientos farmacológicos y no farmacológicos en personas que presentan factores de riesgo de enfermedad cardiovascular. Av Enferm. 2007; XXV(1): 46-55.

Bonilla- Ibañez CP, Gutiérrez de Reales E. Desarrollo y características psicométricas del instrumento para evaluar los factores que influyen en la adherencia a tratamientos farmacológicos y no farmacológicos en personas con factores de riesgo de enfermedad cardiovascular. Av Enferm. 2014; XXXII(1): 53-62.

Flórez IE. Adherencia a tratamientos en pacientes con factores de riesgo cardiovascular. Av Enferm. 2009; 27(2): 25-32.

Rodríguez AL. Factores influyentes en adherencia al tratamiento en pacientes con riesgo cardiovascular. Av Enferm. 2010; 28(1): 63-71.

Cruz WA, Rincon JD. Factores influyentes en la adherencia al tratamiento farmacológico y no farmacológico en adultos mayores hipertensos de una institución de salud I nivel, 2018. Trabajo de grado. Universidad Cooperativa de Colombia. Facultad de enfermería. Bucaramanga: Repositorio Universidad Cooperativa de Colombia; 2018. Disponible en: https://repository.ucc.edu.co/items/f467550a-ad4c-42ec-a34d-02c240ddfa1f

Garzón JF, López VF, Barrero DM. Factores que intervienen en la adherencia farmacológica y no farmacológica en pacientes crónicos adultos mayores con diabetes mellitus tipo II, un estudio piloto. Trabajo de grado Facultad de enfermería. Bogotá: Repositorio Universidad de Cundinamarca; 2020. Disponible en: https://repositorio.ucundinamarca.edu.co/handle/20.500.12558/3561

Guamán-Montero N, Mesa-Cano I, Peña-Cordero S, Ramírez-Coronel AA. Factores que influyen en la adherencia al tratamiento de la diabetes mellitus II. Arch Venez Farmacol Terapéutica. 2021; 40(3): 290-297. doi: https://doi.org/10.5281/zenodo.5039487

Romero-Montes S. Evaluación de la adherencia al tratamiento antihipertensivo en pacientes hipertensos en el área sur de Puerto Rico. Tesis de Doctorado. Ponce: Ponce Health Sciences University Puerto Rico; 2017. Disponible en: https://www.psm.edu/ doc/ph/tesis/Tesis%20Shayra%20Romero%20Montes.pdf

Pérez-Gil JA, Chacón-Moscoso S, Moreno-Rodríguez R. Validez de constructo: el uso de análisis factorial exploratorio-confirmatorio para obtener evidencias de validez. Psicotheeerma [Internet]. 2000; 12(2): 442-446.

Ortiz-Suarez C. Instrumento para evaluar la adherencia a los tratamientos en pacientes con factores de riesgo cardiovascular. Av Enferm [Internet]. 2010; 28 (2): 73-87.

Gorsuch RL. Factor Analysis: Classic Edition 2nd ed. 2014. p. 464. e-Book: ISBN 9781315735740. doi: https://doi.org/10.4324/9781315735740

Lloret-Segura S, Ferreres-Traver A, Hernández-Baeza A, Tomas-Marcos I. El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. An Psicol [Internet]. 2014; 30(3): 1151-1169. doi: http://doi.org/10.6018/analesps.30.3.199361

Walker, D.A, Smith T.J. Computing Robust, Bootstrap-Adjusted Fit Indices for use with nonnormal data. Meas Eval Couns Dev [Internet].2017; 50: 131-137. doi: https://doi.org/10.1080/07481756.2017.1326748

Lai, K. Fit difference between nonnested models given categorical data: Measures and estimation. Struct Equ Modeling [Internet]. 2020; 28(1): 99-120. doi: https://doi.org/10.1080/10705511.2020.1763802

Cho G, Hwang H, Sarstedt M, Ringle CM. Cutoff criteria for overall model fit indexes in generalizedstructured component analysis. J Mark Anal [Internet]. 2020; 8:189-202. doi: https://doi.org/10.1057/s41270-020-00089-1

Escobedo-Portillo M, Hernández-Gómez J, Estebané-Ortega V, Martínez-Moreno G. Modelos de ecuaciones estructurales: características, fases, construcción, aplicación y resultados. Cienc Trab [Internet]. 2016; 18(55): 16-22. https://doi.org/10.4067/S0718-24492016000100004

Tavakol-M, Dennick R. Making sense of Cronbach’s alpha. Int J Med Educ [Internet]. 2011; 2:53-55. doi: http://doi.org/10.5116/ijme.4dfb.8dfd

Jordan-Muiños FM. Valor de corte de los índices de ajuste en el análisis factorial confirmatorio. Rev Inv Psicol Soc. 2021; 7 (1): 1-5.

McNish D, An J, Hancock GR. The torny relation between measurement quality and fit index cutoffs in latent variable models. J Pers Assess. 2018; 100(1): 43-52. doi: https://doi.org/10.1080/00223891.2017.1281286

Organización Mundial de la Salud [Internet]. Adherencia a los tratamientos a largo plazo. Pruebas para la acción. Washington D.C: OMS; 2004. 25(S3):4-26. Disponible en: https://www.paho.org/hq/dmdocuments/2012/WHO-Adherence-Long-Term-Therapies-Spa-2003.pdf

Jankowska PB, Uchmanowicz I, Dudek K, Mazur G. Relationship between patients’ knowledge and medication adherence among patients with hypertension. Patient Prefer Adherence. 2016; 10: 2437-2447. doi: http://dx.doi.org/10.2147/PPA.S117269

Teshome DF, Bekele KB, Habitu YA, Gelagay AA. Medication adherence and its associated factors among hypertensive patients attending the Debre Tabor General Hospital, northwest Ethiopia. Integr Blood Press Control. 2017; 10: 1-7. doi: 10.2147/IBPC.S128914

Tsadik DG, Berhane Y, Worku A. Adherence to antihypertensive treatment and associated factors in Central Ethiopia. Int J Hypertens. 2020; 9540810. doi: https://doi.org/10.1155/2020/9540810

Win T, Banharak S, Ruaisungnoen W. Factors influencing medication adherence among patients with hypertension: A systematic review. Syst Rev Pharm. 2021; 12: 526-538. doi: 10.31838/srp.2021.1.76

Behnood-Rod A, Rabbanifar O, Pourzargar P, Rai A. Adherence to antihypertensive medications in Iranian patients. Int J Hypertens. 2016: 1508752. doi: 10.1155/2016/1508752

Joshi J, Patel P, Gandhi S, Patel N, Chaudhari A. Factors influencing adherence to self-care practices among patients of type 2 diabetes mellitus from Saurashtra region of Gujarat: A conclusive research. J Family Med Prim Care. 2022; 11(10): 6395-6401. doi: 10.4103/jfmpc.jfmpc_473_22

Uchmanowicz B, Chudiak A, Uchmanowicz I, Mazur G. How may coexisting frailty influence adherence to treatment in elderly hypertensive patients? Int J Hypertens. 2019: 1-9. doi: 10.1155/2019/5245184

Alsofyani MA, Aloufi AO, Al-Qhtani NS, Bamansour SO, Almathkori RS. Factors related to treatment adherence among hypertensive patients: A cross-sectional study in primary healthcare centers in Taif city. J Family Community Med. 2022; 29(3): 181-188. doi: 10.4103/jfcm.jfcm_153_22

Drossman DA, Ruddy J. Improving patientprovider relationships to improve health care. Clin Gastroenterol Hepatol. 2020; 18(7): 1417-1426.doi: https://doi: 10.1016/j.cgh.2019.12.007

Drossman DA, Chang L, Deutsch JK, Ford AC, Halpert A, Kroenke K, et al. A review of the evidence and recommendations on communication skills and the patient-provider relationship: A Rome foundation working team report. Gastroenterology. 2021; 161(5): 1670-1688.e7. doi: https://doi.org/10.1053/j.gastro.2021.07.037

República de Colombia. Ministerio de Salud [Internet]. Resolución 8430 de 1993. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Bogotá: MSPS; 1993. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Eugenia Herrera-Guerra, Lili Rosa Bautista-Arellanos, Claudia Patricia Bonilla Ibañez

Downloads

Download data is not yet available.