Application of ultrasound for the control of cyanobacteria and the degradation of cyanotoxins
Published 2023-11-06
Keywords
- advanced oxidation processes,
- alternative treatments,
- bloom,
- cyanobacteria,
- eutrophication
- lotic systems,
- microcystin-LR,
- nutrients,
- water pollution,
- water purification ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Cyanobacterial blooms in water bodies are a problem of a great concern among the community, because of the production of toxic metabolites, called cyanotoxins. Cyanobacteria are made up of many genera and species, with various mechanisms of intoxication; therefore, they constitute a serious environmental problem with detrimental repercussions on the health of living beings and humankind. Additionally, the high production of cyanotoxins associated with the presence of cyanobacteria has increased in extent and frequency throughout the world, which increases the concern of authorities and public service providers. On the other hand, it is important to point out that the conventional processes water treatment facilities are operating with are inefficient for their elimination and/or degradation, since cyanotoxins are soluble in water and persistent. In this regard, applying alternative technologies to traditional purification treatment systems is required to obtain water of quality that is suitable for human consumption. In this work, the use of ultrasound in the treatment of water contaminated with cyanobacteria and cyanotoxins is described, with special emphasis on the influence of the variation of significant parameters that intervene in the efficiency of elimination and inactivation of cyanobacteria, and the degradation of its toxins through the sonication process. With this, it is intended to position low-frequency ultrasound as an advanced technology that allows controlling the alteration of cyanobacteria and their toxins and avoiding the reduction of the quality of the water bodies that will supply the drinking water treatment plants.
Downloads
References
- S. Merel, D. Walker, R. Chicana, S. Snyder, E. Baurès, O. Thomas, “State of knowledge and concerns on cyanobacterial blooms and cyanotoxins,” Environ. Int., vol. 59, pp. 303–327, 2013, doi: https://doi.org/10.1016/j.envint.2013.06.013
- K. Zhao, L. Wang, Q. You, J. Zhang, W. Pang, Q. Wang, “Impact of cyanobacterial bloom intensity on plankton ecosystem functioning measured by eukaryotic phytoplankton and zooplankton indicators,” Ecol. Indic., vol. 140, no. 100, p. 109028, 2022, doi: https://doi.org/10.1016/j.ecolind.2022.109028
- L. You et al., “Multi-class secondary metabolites in cyanobacterial blooms from a tropical water body: Distribution patterns and real-time prediction,” Water Res., vol. 212, p. 118129, 2022, doi: https://doi.org/10.1016/j.watres.2022.118129
- P. Nowicka-Krawczyk et al., “Persistent Cyanobacteria Blooms in Artificial Water Bodies—An Effect of Environmental Conditions or the Result of Anthropogenic Change,” Int. J. Environ. Res. Public Health, vol. 19, no. 12, p. 6990, 2022, doi: https://doi.org/10.3390/ijerph19126990
- M. L. Wells et al., “Harmful algal blooms and climate change: Learning from the past and present to forecast the future,” Harmful Algae, vol. 49, pp. 68–93, 2015, doi: https://doi.org/10.1016/j.hal.2015.07.009
- I. Chorus, J. Bartram, Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. London, 1999.
- H. W. Paerl, T. G. Otten, R. Kudela, “Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum,” Environ. Sci. Technol., vol. 52, no. 10, pp. 5519–5529, 2018, doi: https://doi.org/10.1021/acs.est.7b05950
- P. Labohá et al., “Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells,” Environ. Toxicol. Pharmacol., vol. 98, p. 104073, 2023, doi: https://doi.org/10.1016/j.etap.2023.104073
- H. Falfushynska, N. Kasianchuk, E. Siemens, E. Henao, P. Rzymski, “A Review of Common Cyanotoxins and Their Effects on Fish,” Toxics, vol. 11, no. 2, p. 118, 2023, doi: https://doi.org/10.3390/toxics11020118
- A. C. Mehinto et al., “Synthesis of ecotoxicological studies on cyanotoxins in freshwater habitats – Evaluating the basis for developing thresholds protective of aquatic life in the United States,” Sci. Total Environ., vol. 795, p. 148864, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.148864
- M. Crettaz-Minaglia, D. Sedan, L. Giannuzzi, “Bioacumulacion y biomagnificacion de cianotoxinas en organismos acuaticos de agua dulce,” Cianobacterias como determinantes ambientales de la salud. Argentina: Ministerio de Salud de la Nación, departamento de Salud Ambiental, 2017.
- D. M. M. Caramés, “Tecnologías de control de floraciones de cianobacterias y algas nocivas en cuerpos de agua, con énfasis en el uso de irradiación por ultrasonido,” Innotec, vol. 12, no. 12, pp. 54–61, 2016.
- OMS, Guías para la calidad del agua potable, Tercera. Organización Mundial de la Salud, 2006.
- A. Serrà, L. Philippe, F. Perreault, S. Garcia-Segura, “Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation,” Water Res., vol. 188, p. 116543, 2021, doi: https://doi.org/10.1016/j.watres.2020.116543
- H. W. Paerl et al., “Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients,” Harmful Algae, vol. 54, pp. 213–222, 2016, doi: https://doi.org/10.1016/j.hal.2015.09.009
- X. He et al., “Toxic cyanobacteria and drinking water: Impacts, detection, and treatment,” Harmful Algae, vol. 54, pp. 174–193, 2016, doi: https://doi.org/10.1016/j.hal.2016.01.001
- M. A. Mazhar et al., “Chlorination disinfection by-products in municipal drinking water – A review,” J. Clean. Prod., vol. 273, p. 123159, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123159
- J. Park, J. Church, Y. Son, K. T. Kim, W. H. Lee, “Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs),” Ultrason. Sonochem., vol. 38, pp. 326–334, 2017, doi: https://doi.org/10.1016/j.ultsonch.2017.03.003
- D. Ghernaout, N. Elboughdiri, “Dealing with Cyanobacteria and Cyanotoxins: Engineering Viewpoints,” Open Access Libr. J., vol. 7, no. 5, p. e6363, 2020, doi: https://doi.org/10.4236/oalib.1106363
- L. A. Gaysina, A. Saraf, P. Singh, “Cyanobacteria in diverse habitats,” Cyanobacteria: From Basic Science to Applications, 2019, pp. 1–28. doi: https://doi.org/10.1016/B978-0-12-814667-5.00001-5
- F. M. Buratti et al., “Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation,” Arch. Toxicol., vol. 91, no. 3, pp. 1049–1130, 2017, doi: https://doi.org/10.1007/s00204-016-1913-6
- G. Kaur, “Freshwater Cyanotoxins,” in Biomarkers in Toxicology, Elsevier Inc., 2019, pp. 601–613, doi: https://doi.org/10.1016/b978-0-12-814655-2.00035-9
- A. K. D. D. S. Sá et al., “Algal blooms and trophic state in a tropical estuary blocked by a dam (Northeastern Brazil),” Ocean Coast. Res., vol. 69, p. e21009, 2021.
- J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, P. M. Visser, “Cyanobacterial blooms,” Nat. Rev. Microbiol., vol. 16, no. 8, pp. 471–483, 2018, doi: https://doi.org/10.1038/s41579-018-0040-1
- F. S. Alvarez Dalinger, V. L. Lozano, C. N. Borja, L. B. Moraña, S. María Mónica, “Short-Term Meteorological Conditions Explain Cyanobacterial Blooms in a Tropical Reservoir,” Water, vol. 15, no. 2, p. 302, 2023, doi: https://doi.org/10.3390/w15020302
- J. K. Malik, V. K. Bharti, A. Rahal, D. Kumar, R. C. Gupta, “Cyanobacterial (blue-green algae) toxins,” in Handbook of Toxicology of Chemical Warfare Agents, 2020, pp. 467–478. doi: https://doi.org/10.1016/b978-0-12-819090-6.00031-3
- J. S. Yunes, “Cyanobacterial Toxins,” in Cyanobacteria: From Basic Science to Applications. Rio Grande, Brazil: Elsevier Inc., 2019, pp. 443–458. doi: https://doi.org/10.1016/B978-0-12-814667-5.00022-2
- L. M. Grattan, S. Holobaugh, J. G. Morris, “Harmful algal blooms and public health,” Harmful Algae, vol. 57, pp. 2–8, 2016, doi: https://doi.org/10.1016/j.hal.2016.05.003
- S. Merel, M. Clément, O. Thomas, “State of the art on cyanotoxins in water and their behaviour towards chlorine,” Toxicon, vol. 55, no. 4, pp. 677–691, 2010, doi: https://doi.org/10.1016/j.toxicon.2009.10.028
- S. Merel, M. C. Villarín, K. Chung, S. Snyder, “Spatial and thematic distribution of research on cyanotoxins,” Toxicon, vol. 76, pp. 118–131, 2013, doi: https://doi.org/10.1016/j.toxicon.2013.09.008
- I. Y. Massey et al., “Exposure routes and health effects of microcystins on animals and humans: A mini-review,” Toxicon, vol. 151, pp. 156–162, 2018, doi: https://doi.org/10.1016/j.toxicon.2018.07.010
- L. Chen, J. P. Giesy, P. Xie, “The dose makes the poison,” Sci. Total Environ., vol. 621, pp. 649–653, 2018, doi: https://doi.org/10.1016/j.scitotenv.2017.11.218
- Y. Yao, Y. Pan, S. Liu, “Power ultrasound and its applications: A state-of-the-art review,” Ultrason. Sonochem., vol. 62, p. 104722, 2020, doi: https://doi.org/10.1016/j.ultsonch.2019.104722
- G. Chen, X. Ding, W. Zhou, “Study on ultrasonic treatment for degradation of Microcystins (MCs),” Ultrason. Sonochem., vol. 63, p. 104900, 2020, doi: https://doi.org/10.1016/j.ultsonch.2019.104900
- M. Kurokawa, P. M. King, X. Wu, E. M. Joyce, T. J. Mason, K. Yamamoto, “Effect of sonication frequency on the disruption of algae,” Ultrason. Sonochem., vol. 31, pp. 157–162, 2016, doi: https://doi.org/10.1016/j.ultsonch.2015.12.011
- D. Purcell, S. A. Parsons, B. Jefferson, “The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.,” Environ. Technol., vol. 34, no. 17, pp. 2477–2490, 2013, doi: https://doi.org/10.1080/09593330.2013.773355
- X. Tan, X. Shu, J. Guo, K. Parajuli, X. Zhang, Z. Duan, “Effects of low-frequency ultrasound on Microcystis aeruginosa from cell inactivation to disruption,” Bull. Environ. Contam. Toxicol., vol. 101, no. 1, pp. 117–123, 2018, doi: https://doi.org/10.1007/s00128-018-2348-y
- G. Zhang, P. Zhang, B. Wang, H. Liu, “Ultrasonic frequency effects on the removal of Microcystis aeruginosa,” Ultrason. Sonochem., vol. 13, no. 5, pp. 446–450, 2006, doi: https://doi.org/10.1016/j.ultsonch.2005.09.012
- H. Hao, M. Wu, Y. Chen, J. Tang, Q. Wu, “Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation,” Colloids Surfaces B Biointerfaces, vol. 33, no. 3–4, pp. 151–156, 2004, doi: https://doi.org/10.1016/j.colsurfb.2003.09.003
- J. W. Tang, Q. Y. Wu, H. W. Hao, Y. Chen, M. Wu, “Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium,” Colloids Surfaces B Biointerfaces, vol. 36, no. 2, pp. 115–121, 2004, doi: https://doi.org/10.1016/j.colsurfb.2004.06.003
- F. Cobo, “Métodos de control de las floraciones de cianobacterias en agues continentales,” Limnetica, vol. 34, no. 1, pp. 247–268, 2015.
- P. Rajasekhar, L. Fan, T. Nguyen, F. A. Roddick, “A review of the use of sonication to control cyanobacterial blooms,” Water Res., vol. 46, no. 14, pp. 4319–4329, 2012, doi: https://doi.org/10.1016/j.watres.2012.05.054
- C. Huu Nguyen, R. V. Tikekar, N. Nitin, “Combination of high-frequency ultrasound with propyl gallate for enhancing inactivation of bacteria in water and apple juice,” Innov. Food Sci. Emerg. Technol., vol. 82, p. 103149, 2022, doi: https://doi.org/10.1016/j.ifset.2022.103149
- Y. Kong, Y. Peng, Z. Zhang, M. Zhang, Y. Zhou, Z. Duan, “Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter,” Ultrason. Sonochem., vol. 56, pp. 447–457, 2019, doi: https://doi.org/10.1016/j.ultsonch.2019.04.017
- O. D. Schneider, L. A. Weinrich, S. Brezinski, “Ultrasonic treatment of Algae in a New Jersey Reservoir,” J. Am. Water Works Assoc., vol. 107, no. 10, pp. E533–E542, 2015, doi: https://doi.org/10.5942/jawwa.2015.107.0149
- L. Zhang et al., “Simultaneous removal of colonial Microcystis and microcystins by protozoa grazing coupled with ultrasound treatment,” J. Hazard. Mater., vol. 420, p. 126616, 2021, doi: https://doi.org/10.1016/j.jhazmat.2021.126616
- A. Rodriguez-Molares, S. Dickson, P. Hobson, C. Howard, A. Zander, M. Burch, “Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa,” Ultrason. Sonochem., vol. 21, no. 4, pp. 1299–1304, 2014, doi: https://doi.org/10.1016/j.ultsonch.2014.01.027
- D. Jančula, P. Mikula, B. Maršálek, P. Rudolf, F. Pochylý, “Selective method for cyanobacterial bloom removal: Hydraulic jet cavitation experience,” Aquac. Int., vol. 22, no. 2, pp. 509–521, 2014, doi: https://doi.org/10.1007/s10499-013-9660-7
- P. Li, Y. Song, S. Yu, H. D. Park, “The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors,” Chemosphere, vol. 136, pp. 245–251, 2015, doi: https://doi.org/10.1016/j.chemosphere.2015.05.017
- M. V. Villanueva, M. C. Luna, M. I. Gil, A. Allende, “Ultrasound treatments improve the microbiological quality of water reservoirs used for the irrigation of fresh produce,” Food Res. Int., vol. 75, pp. 140–147, 2015, doi: https://doi.org/10.1016/j.foodres.2015.05.040