Vol. 22 No. 4 (2023): Revista UIS Ingenierías
Articles

Application of ultrasound for the control of cyanobacteria and the degradation of cyanotoxins

Jinna Marcela Loaiza-González
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Gustavo Peñuela-Mesa
Universidad de Antioquia

Published 2023-11-06

Keywords

  • advanced oxidation processes,
  • alternative treatments,
  • bloom,
  • cyanobacteria,
  • eutrophication,
  • lotic systems,
  • microcystin-LR,
  • nutrients,
  • water pollution,
  • water purification
  • ...More
    Less

How to Cite

Loaiza-González, J. M. ., Rubio-Clemente, A., & Peñuela-Mesa, G. (2023). Application of ultrasound for the control of cyanobacteria and the degradation of cyanotoxins . Revista UIS Ingenierías, 22(4), 51–60. https://doi.org/10.18273/revuin.v22n4-2023005

Abstract

Cyanobacterial blooms in water bodies are a problem of a great concern among the community, because of the production of toxic metabolites, called cyanotoxins. Cyanobacteria are made up of many genera and species, with various mechanisms of intoxication; therefore, they constitute a serious environmental problem with detrimental repercussions on the health of living beings and humankind. Additionally, the high production of cyanotoxins associated with the presence of cyanobacteria has increased in extent and frequency throughout the world, which increases the concern of authorities and public service providers. On the other hand, it is important to point out that the conventional processes water treatment facilities are operating with are inefficient for their elimination and/or degradation, since cyanotoxins are soluble in water and persistent. In this regard, applying alternative technologies to traditional purification treatment systems is required to obtain water of quality that is suitable for human consumption. In this work, the use of ultrasound in the treatment of water contaminated with cyanobacteria and cyanotoxins is described, with special emphasis on the influence of the variation of significant parameters that intervene in the efficiency of elimination and inactivation of cyanobacteria, and the degradation of its toxins through the sonication process. With this, it is intended to position low-frequency ultrasound as an advanced technology that allows controlling the alteration of cyanobacteria and their toxins and avoiding the reduction of the quality of the water bodies that will supply the drinking water treatment plants.

Downloads

Download data is not yet available.

References

  1. S. Merel, D. Walker, R. Chicana, S. Snyder, E. Baurès, O. Thomas, “State of knowledge and concerns on cyanobacterial blooms and cyanotoxins,” Environ. Int., vol. 59, pp. 303–327, 2013, doi: https://doi.org/10.1016/j.envint.2013.06.013
  2. K. Zhao, L. Wang, Q. You, J. Zhang, W. Pang, Q. Wang, “Impact of cyanobacterial bloom intensity on plankton ecosystem functioning measured by eukaryotic phytoplankton and zooplankton indicators,” Ecol. Indic., vol. 140, no. 100, p. 109028, 2022, doi: https://doi.org/10.1016/j.ecolind.2022.109028
  3. L. You et al., “Multi-class secondary metabolites in cyanobacterial blooms from a tropical water body: Distribution patterns and real-time prediction,” Water Res., vol. 212, p. 118129, 2022, doi: https://doi.org/10.1016/j.watres.2022.118129
  4. P. Nowicka-Krawczyk et al., “Persistent Cyanobacteria Blooms in Artificial Water Bodies—An Effect of Environmental Conditions or the Result of Anthropogenic Change,” Int. J. Environ. Res. Public Health, vol. 19, no. 12, p. 6990, 2022, doi: https://doi.org/10.3390/ijerph19126990
  5. M. L. Wells et al., “Harmful algal blooms and climate change: Learning from the past and present to forecast the future,” Harmful Algae, vol. 49, pp. 68–93, 2015, doi: https://doi.org/10.1016/j.hal.2015.07.009
  6. I. Chorus, J. Bartram, Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. London, 1999.
  7. H. W. Paerl, T. G. Otten, R. Kudela, “Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum,” Environ. Sci. Technol., vol. 52, no. 10, pp. 5519–5529, 2018, doi: https://doi.org/10.1021/acs.est.7b05950
  8. P. Labohá et al., “Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells,” Environ. Toxicol. Pharmacol., vol. 98, p. 104073, 2023, doi: https://doi.org/10.1016/j.etap.2023.104073
  9. H. Falfushynska, N. Kasianchuk, E. Siemens, E. Henao, P. Rzymski, “A Review of Common Cyanotoxins and Their Effects on Fish,” Toxics, vol. 11, no. 2, p. 118, 2023, doi: https://doi.org/10.3390/toxics11020118
  10. A. C. Mehinto et al., “Synthesis of ecotoxicological studies on cyanotoxins in freshwater habitats – Evaluating the basis for developing thresholds protective of aquatic life in the United States,” Sci. Total Environ., vol. 795, p. 148864, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.148864
  11. M. Crettaz-Minaglia, D. Sedan, L. Giannuzzi, “Bioacumulacion y biomagnificacion de cianotoxinas en organismos acuaticos de agua dulce,” Cianobacterias como determinantes ambientales de la salud. Argentina: Ministerio de Salud de la Nación, departamento de Salud Ambiental, 2017.
  12. D. M. M. Caramés, “Tecnologías de control de floraciones de cianobacterias y algas nocivas en cuerpos de agua, con énfasis en el uso de irradiación por ultrasonido,” Innotec, vol. 12, no. 12, pp. 54–61, 2016.
  13. OMS, Guías para la calidad del agua potable, Tercera. Organización Mundial de la Salud, 2006.
  14. A. Serrà, L. Philippe, F. Perreault, S. Garcia-Segura, “Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation,” Water Res., vol. 188, p. 116543, 2021, doi: https://doi.org/10.1016/j.watres.2020.116543
  15. H. W. Paerl et al., “Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients,” Harmful Algae, vol. 54, pp. 213–222, 2016, doi: https://doi.org/10.1016/j.hal.2015.09.009
  16. X. He et al., “Toxic cyanobacteria and drinking water: Impacts, detection, and treatment,” Harmful Algae, vol. 54, pp. 174–193, 2016, doi: https://doi.org/10.1016/j.hal.2016.01.001
  17. M. A. Mazhar et al., “Chlorination disinfection by-products in municipal drinking water – A review,” J. Clean. Prod., vol. 273, p. 123159, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123159
  18. J. Park, J. Church, Y. Son, K. T. Kim, W. H. Lee, “Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs),” Ultrason. Sonochem., vol. 38, pp. 326–334, 2017, doi: https://doi.org/10.1016/j.ultsonch.2017.03.003
  19. D. Ghernaout, N. Elboughdiri, “Dealing with Cyanobacteria and Cyanotoxins: Engineering Viewpoints,” Open Access Libr. J., vol. 7, no. 5, p. e6363, 2020, doi: https://doi.org/10.4236/oalib.1106363
  20. L. A. Gaysina, A. Saraf, P. Singh, “Cyanobacteria in diverse habitats,” Cyanobacteria: From Basic Science to Applications, 2019, pp. 1–28. doi: https://doi.org/10.1016/B978-0-12-814667-5.00001-5
  21. F. M. Buratti et al., “Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation,” Arch. Toxicol., vol. 91, no. 3, pp. 1049–1130, 2017, doi: https://doi.org/10.1007/s00204-016-1913-6
  22. G. Kaur, “Freshwater Cyanotoxins,” in Biomarkers in Toxicology, Elsevier Inc., 2019, pp. 601–613, doi: https://doi.org/10.1016/b978-0-12-814655-2.00035-9
  23. A. K. D. D. S. Sá et al., “Algal blooms and trophic state in a tropical estuary blocked by a dam (Northeastern Brazil),” Ocean Coast. Res., vol. 69, p. e21009, 2021.
  24. J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, P. M. Visser, “Cyanobacterial blooms,” Nat. Rev. Microbiol., vol. 16, no. 8, pp. 471–483, 2018, doi: https://doi.org/10.1038/s41579-018-0040-1
  25. F. S. Alvarez Dalinger, V. L. Lozano, C. N. Borja, L. B. Moraña, S. María Mónica, “Short-Term Meteorological Conditions Explain Cyanobacterial Blooms in a Tropical Reservoir,” Water, vol. 15, no. 2, p. 302, 2023, doi: https://doi.org/10.3390/w15020302
  26. J. K. Malik, V. K. Bharti, A. Rahal, D. Kumar, R. C. Gupta, “Cyanobacterial (blue-green algae) toxins,” in Handbook of Toxicology of Chemical Warfare Agents, 2020, pp. 467–478. doi: https://doi.org/10.1016/b978-0-12-819090-6.00031-3
  27. J. S. Yunes, “Cyanobacterial Toxins,” in Cyanobacteria: From Basic Science to Applications. Rio Grande, Brazil: Elsevier Inc., 2019, pp. 443–458. doi: https://doi.org/10.1016/B978-0-12-814667-5.00022-2
  28. L. M. Grattan, S. Holobaugh, J. G. Morris, “Harmful algal blooms and public health,” Harmful Algae, vol. 57, pp. 2–8, 2016, doi: https://doi.org/10.1016/j.hal.2016.05.003
  29. S. Merel, M. Clément, O. Thomas, “State of the art on cyanotoxins in water and their behaviour towards chlorine,” Toxicon, vol. 55, no. 4, pp. 677–691, 2010, doi: https://doi.org/10.1016/j.toxicon.2009.10.028
  30. S. Merel, M. C. Villarín, K. Chung, S. Snyder, “Spatial and thematic distribution of research on cyanotoxins,” Toxicon, vol. 76, pp. 118–131, 2013, doi: https://doi.org/10.1016/j.toxicon.2013.09.008
  31. I. Y. Massey et al., “Exposure routes and health effects of microcystins on animals and humans: A mini-review,” Toxicon, vol. 151, pp. 156–162, 2018, doi: https://doi.org/10.1016/j.toxicon.2018.07.010
  32. L. Chen, J. P. Giesy, P. Xie, “The dose makes the poison,” Sci. Total Environ., vol. 621, pp. 649–653, 2018, doi: https://doi.org/10.1016/j.scitotenv.2017.11.218
  33. Y. Yao, Y. Pan, S. Liu, “Power ultrasound and its applications: A state-of-the-art review,” Ultrason. Sonochem., vol. 62, p. 104722, 2020, doi: https://doi.org/10.1016/j.ultsonch.2019.104722
  34. G. Chen, X. Ding, W. Zhou, “Study on ultrasonic treatment for degradation of Microcystins (MCs),” Ultrason. Sonochem., vol. 63, p. 104900, 2020, doi: https://doi.org/10.1016/j.ultsonch.2019.104900
  35. M. Kurokawa, P. M. King, X. Wu, E. M. Joyce, T. J. Mason, K. Yamamoto, “Effect of sonication frequency on the disruption of algae,” Ultrason. Sonochem., vol. 31, pp. 157–162, 2016, doi: https://doi.org/10.1016/j.ultsonch.2015.12.011
  36. D. Purcell, S. A. Parsons, B. Jefferson, “The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.,” Environ. Technol., vol. 34, no. 17, pp. 2477–2490, 2013, doi: https://doi.org/10.1080/09593330.2013.773355
  37. X. Tan, X. Shu, J. Guo, K. Parajuli, X. Zhang, Z. Duan, “Effects of low-frequency ultrasound on Microcystis aeruginosa from cell inactivation to disruption,” Bull. Environ. Contam. Toxicol., vol. 101, no. 1, pp. 117–123, 2018, doi: https://doi.org/10.1007/s00128-018-2348-y
  38. G. Zhang, P. Zhang, B. Wang, H. Liu, “Ultrasonic frequency effects on the removal of Microcystis aeruginosa,” Ultrason. Sonochem., vol. 13, no. 5, pp. 446–450, 2006, doi: https://doi.org/10.1016/j.ultsonch.2005.09.012
  39. H. Hao, M. Wu, Y. Chen, J. Tang, Q. Wu, “Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation,” Colloids Surfaces B Biointerfaces, vol. 33, no. 3–4, pp. 151–156, 2004, doi: https://doi.org/10.1016/j.colsurfb.2003.09.003
  40. J. W. Tang, Q. Y. Wu, H. W. Hao, Y. Chen, M. Wu, “Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium,” Colloids Surfaces B Biointerfaces, vol. 36, no. 2, pp. 115–121, 2004, doi: https://doi.org/10.1016/j.colsurfb.2004.06.003
  41. F. Cobo, “Métodos de control de las floraciones de cianobacterias en agues continentales,” Limnetica, vol. 34, no. 1, pp. 247–268, 2015.
  42. P. Rajasekhar, L. Fan, T. Nguyen, F. A. Roddick, “A review of the use of sonication to control cyanobacterial blooms,” Water Res., vol. 46, no. 14, pp. 4319–4329, 2012, doi: https://doi.org/10.1016/j.watres.2012.05.054
  43. C. Huu Nguyen, R. V. Tikekar, N. Nitin, “Combination of high-frequency ultrasound with propyl gallate for enhancing inactivation of bacteria in water and apple juice,” Innov. Food Sci. Emerg. Technol., vol. 82, p. 103149, 2022, doi: https://doi.org/10.1016/j.ifset.2022.103149
  44. Y. Kong, Y. Peng, Z. Zhang, M. Zhang, Y. Zhou, Z. Duan, “Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter,” Ultrason. Sonochem., vol. 56, pp. 447–457, 2019, doi: https://doi.org/10.1016/j.ultsonch.2019.04.017
  45. O. D. Schneider, L. A. Weinrich, S. Brezinski, “Ultrasonic treatment of Algae in a New Jersey Reservoir,” J. Am. Water Works Assoc., vol. 107, no. 10, pp. E533–E542, 2015, doi: https://doi.org/10.5942/jawwa.2015.107.0149
  46. L. Zhang et al., “Simultaneous removal of colonial Microcystis and microcystins by protozoa grazing coupled with ultrasound treatment,” J. Hazard. Mater., vol. 420, p. 126616, 2021, doi: https://doi.org/10.1016/j.jhazmat.2021.126616
  47. A. Rodriguez-Molares, S. Dickson, P. Hobson, C. Howard, A. Zander, M. Burch, “Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa,” Ultrason. Sonochem., vol. 21, no. 4, pp. 1299–1304, 2014, doi: https://doi.org/10.1016/j.ultsonch.2014.01.027
  48. D. Jančula, P. Mikula, B. Maršálek, P. Rudolf, F. Pochylý, “Selective method for cyanobacterial bloom removal: Hydraulic jet cavitation experience,” Aquac. Int., vol. 22, no. 2, pp. 509–521, 2014, doi: https://doi.org/10.1007/s10499-013-9660-7
  49. P. Li, Y. Song, S. Yu, H. D. Park, “The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors,” Chemosphere, vol. 136, pp. 245–251, 2015, doi: https://doi.org/10.1016/j.chemosphere.2015.05.017
  50. M. V. Villanueva, M. C. Luna, M. I. Gil, A. Allende, “Ultrasound treatments improve the microbiological quality of water reservoirs used for the irrigation of fresh produce,” Food Res. Int., vol. 75, pp. 140–147, 2015, doi: https://doi.org/10.1016/j.foodres.2015.05.040