Resumen
La enfermedad por coronavirus 2019 (COVID-19) causada por el Coronavirus del Síndrome Respiratorio Agudo Severo 2 (SARS-CoV-2) ha generado un impacto sin precedentes en la salud mundial debido a su rápida propagación desde que fue declarada pandemia el 11 de marzo de 2020 por la Organización Mundial de la Salud (OMS), afectando a millones de personas en más de 200 países1-3. A pesar de que no se ha determinado por completo la inmunopatogénesis de COVID-19, se sabe que el mal pronóstico de los pacientes se asocia a una respuesta antiviral insuficiente durante la fase inicial de la infección, caracterizada por un déficit en la producción de Interferones tipo I (IFNs-I)4, sumado a una respuesta inflamatoria exagerada, que conduce al síndrome de liberación de citocinas5. Esta revisión describe los aspectos inmunológicos más importantes de la COVID-19: los principales mecanismos de activación y evasión de la respuesta del IFN en la infección causada por SARS-CoV-2; la contribución a la gravedad de la enfermedad por parte de la desregulación de citoquinas y la respuesta celular; y algunas de las estrategias terapéuticas que se dirigen a elementos de la respuesta inmune innata.
Referencias
Comisión Municipal de Salud de Wuhan. Informe de la Comisión Municipal de Salud de Wuhan sobre la situación actual de epidemia de neumonía en nuestra ciudad. 2019 Dec 31 [cited 2020 Mar 15]; Disponible en: http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989
who.int [Internet]. Geneva: World Health Organization; c2020 [cited 2020 Mar 15]. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
who.int [Internet]. Geneva: World Health Organization; c2020 [cited 2020 Mar 15]. Novel Coronavirus – China. Available from: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
Lowery SA, Sariol A, Perlman S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe. 2021; 29(7): 1052–1062. doi: 10.1016/j.chom.2021.05.004
Que Y, Hu C, Wan K, Hu P, Wang R, Luo J, et al. Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol. 2021; 22: 1-14. doi: 10.1080/08830185.2021.1884248
Bethesda: National Institute of Health; c2020. Clinical Spectrum of SARS-CoV-2 Infection. COVID-19 Treatment Guidelines. Available from: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
Sousa CP, Brites C. Immune response in SARS-CoV-2 infection: the role of interferons type I and type III. Brazilian J Infect Dis. 2020; 24(5): 428-433. doi: 10.1016/j.bjid.2020.07.011
Law H, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005; 106(7): 2366–2374. doi: 10.1182/blood-2004-10-4166
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–273. doi: https://doi.org/10.1038/s41586-020-2012-7
Streicher F, Jouvenet N. Stimulation of innate immunity by host and viral RNAs. Trends Immunol. 2019; 40(12): 1134–1148. doi: 10.1016/j.it.2019.10.009
Pestka S. The interferons: 50 years after their discovery, there is much more to learn. J Biol Chem. 2007; 282(28): 20047–20051. doi: https://doi.org/10.1074/jbc.R700004200
Ank N, West H, Paludan SR. IFN-λ: Novel antiviral cytokines. J Interf Cytokine Res. 2006; 26(6): 373–379. https://doi.org/10.1089/jir.2006.26.373
Vilček J. Novel interferons. Nat Immunol. 2003; 4(1): 8–9. https://doi.org/10.1038/ni0103-8
Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol. 2018 ; 9: 2061. doi: 10.3389/fimmu.2018.02061
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004; 75(2): 163–189. doi: https://doi.org/10.1189/jlb.0603252
Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity. 2019; 50(4): 907–923. doi: 10.1016/j.immuni.2019.03.025
Chow KT, Jr. MG, Loo Y-M. RIG-I and Other RNA Sensors in Antiviral Immunity. Annu Rev Immunol. 2018; 36: 667–694. doi: https://doi.org/10.1146/annurev-immunol-042617-053309
Takeuchi O, Akira S. Pattern Recognition receptors and inflammation. Cell. 2010; 140(6): 805–820. doi: 10.1016/j.cell.2010.01.022
Kell AM, Gale M. RIG-I in RNA virus recognition. Virology. 2015; 479–480:110–21. doi: 10.1016/j.virol.2015.02.017
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 14(1): 36–49. doi: https://doi.org/10.1038/nri3581
Wells AI, Coyne CB. Type III interferons in antiviral defenses at barrier surfaces. Trends Immunol. 2018; 39(10): 848-58. doi: 10.1016/j.it.2018.08.008
Schindler C, Levy DE, Decker T. JAK-STAT Signaling: From interferons to cytokines. J Biol Chem. 2007; 282(28): 20059–20063. doi: 10.1074/jbc.R700016200
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse array of gene products are effectors of the type I interferon antiviral response. Nature. 2011; 472(7344): 481-485. doi: 10.1038/nature09907
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015; 15(2): 87–103. doi: https://doi.org/10.1038/nri3787
Johnson TR, Mertz SE, Gitiban N, Hammond S, LeGallo R, Durbin RK, et al. Role for innate IFNs in determining respiratory syncytial virus immunopathology. J Immunol. 2005; 174(11): 7234–741. doi: 10.4049/jimmunol.174.11.7234
Dai J, Megjugorac NJ, Gallagher GE, Yu RYL, Gallagher G. IFN-λ1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells. Blood. 2009; 113(23): 5829–5838. doi: https://doi.org/10.1182/blood-2008-09-179507
Dandekar AA, Perlman S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005; 5(12): 917–927. https://doi.org/10.1038/nri1732
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016; 19(2): 181–193. doi: 10.1016/j.chom.2016.01.007
Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019; 129(9): 3625–3639. https://doi.org/10.1172/JCI126363
Arabi YM, Asiri AY, Assiri AM, Balkhy HH, Al Bshabshe A, Al Jeraisy M, et al. Interferon Beta-1b and lopinavir–ritonavir for Middle East respiratory syndrome. 2020; 383(17): 1645–1656. doi: 10.1056/NEJMoa2015294
Katsura H, Sontake V, Tata A, Kobayashi Y, Edwards CE, Heaton BE, et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020; 27(6): 890-904.e8. doi: 10.1016/j.stem.2020.10.005
Galani I-E, Rovina N, Lampropoulou V, Triantafyllia V, Manioudaki M, Pavlos E, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2020; 22(1): 32–40. doi: 10.1038/s41590-020-00840-x
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science (80- ). 2020; 370(6515): eabd4585. doi: 10.1126/science. abd4585
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2020; 591(7848): 92–98. doi: 10.1038/s41586-020-03065-y
Zhang Q, Liu Z, Moncada-Velez M, Chen J, Ogishi M, Bigio B, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020; 23; 370(6515). doi: 10.1126/science.abd4570
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nat 2020; 584(7821): 463–469. https://doi.org/10.1038/s41586-020-2588-y
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020 Aug 7;369(6504):718-24. doi: 10.1126/science.abc6027
van der Made CI, Simons A, Schuurs-Hoeijmakers J, Heuvel G van den, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020; 324(7): 663–673. doi:10.1001/jama.2020.13719
Wei L, Wang W, Chen D, Xu B. Dysregulation of the immune response affects the outcome of critical COVID-19 patients. J Med Virol. 2020; 92(11): 2768–2776. doi: https://doi.org/10.1002/jmv.26181
Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard J-C, Perret M, et al. Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol. 2020; 146(1): 206–208.e2. doi: 10.1016/j.jaci.2020.04.029
Ruetsch C, Brglez V, Crémoni M, Zorzi K, Fernandez C, Boyer-Suavet S, et al. Functional exhaustion of type i and ii interferons production in severe COVID-19 patients. Front Med. 2021; 1106. doi: https://doi.org/10.3389/fmed.2020.60396
Abb J, Abb H, Deinhardt F. Age-related decline of human interferon alpha and interferon gamma production. Blut. 1984; 48(5): 285–289. doi: https://doi.org/10.1007/BF00320399
Stout-Delgado HW, Yang X, Walker WE, Tesar BM, Goldstein DR. Aging Impairs Interferon Regulatory Factor 7 Upregulation in Plasmacytoid DCs during TLR9 Activation. J Immunol. 2008; 181(10): 6747. doi: 10.4049/jimmunol.181.10.6747
Beli E, Clinthorne JF, Duriancik DM, Hwang Ii, Kim S, Gardner EM. Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech Ageing Dev. 2011; 132(10): 503. doi: 10.1016/j.mad.2011.08.005
Schreiber G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front Immunol. 2020; 11: 595739. doi: 10.3389/fimmu.2020.595739
Teran-Cabanillas E, Montalvo-Corral M, Caire-Juvera G, Moya-Camarena SY, Hernández J. Decreased interferon-α and interferon-β production in obesity and expression of suppressor of cytokine signaling. Nutrition. 2013; 29(1): 207–212. doi: 10.1016/j.nut.2012.04.019
Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020; 11(1): 3810. doi: https://doi.org/10.1038/s41467-020-17665-9
Yuan S, Balaji S, Lomakin IB, Xiong Y. Coronavirus Nsp1: Immune response suppression and protein expression inhibition. Front Microbiol. 2021; 12: 752214. doi: 10.3389/fmicb.2021.752214
Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S, et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep [Internet]. 2021 May 18;35(7). Available from: http://www.cell.com/article/S2211124721004654/fulltext.
Li JY, Liao CH, Wang Q, Tan YJ, Luo R, Qiu Y, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020; 286. doi: 10.1016/j.virusres.2020.198074
Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. 2020; 9(1): 1418–1428. https://doi.org/101080/2222175120201780953
Xia X. Extreme genomic CpG Deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. 2020; 37(9): 2699-2705. doi: https://doi.org/10.1093/molbev/msaa094
Ivanov KA, Ziebuhr J. Human Coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol. 2004; 78(14): 7833-7838. doi: https://doi.org/10.1128/JVI.78.14.7833-7838.2004
Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A. 2009; 106(9): 3484-3489. doi: 10.1073/pnas.0808790106
Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, et al. Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex. PLOS Pathog. 2011; 7(10): e1002294. doi: https://doi.org/10.1371/journal.ppat.1002294
Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio. 2013; 4(4): e00524-13. doi:10.1128/mBio.00524-13
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020; 827. doi: https://doi.org/10.3389/fimmu.2020.00827
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014; 1843(11): 2563–2582. doi: https://doi.org/10.1016/j.bbamcr.2014.05.014
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012; 76(1): 16–32. doi: https://doi.org/10.1128/MMBR.05015-11
Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta. 2020; 509: 280–287. doi: 10.1016/j.cca.2020.06.017
Mangalmurti N, Hunter CA. Cytokine storms: Understanding COVID-19. Immunity. 2020; 53(1): 19–25. doi: 10.1016/j.immuni.2020.06.017
Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003; 200(3):282–289. doi: https://doi.org/10.1002/path.1440
Peña López BO, Rincón Orozco B, Castillo León JJ. SARS-CoV-2: generalidades bioquímicas y métodos de diagnóstico. Nova. 2020; 18(35): 11–33. doi: https://doi.org/10.22490/24629448.4183
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. doi: https://doi.org/10.1016/S0140-6736(20)30183-5
Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021; 6(1): 1–20. doi: https://doi.org/10.1038/s41392-021-00679-0
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620–2629. doi: 10.1172/JCI137244
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420–422. doi: https://doi.org/10.1016/S2213-2600(20)30076-X
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020 175. 2020; 17(5): 533–535. doi: 10.1038/s41423-020-0402-2
Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv. 2020; doi: https://doi.org/10.1101/2020.03.27.20045427
Yuan-Chun L, Liang W-G, Chen F-W, Hsu J-H, Yang J-J, Chang M-S. IL-19 Induces production of IL-6 and TNF-α and results in cell apoptosis through TNF-α. J Immunol. 2002; 169(8): 4288–4297. doi: https://doi.org/10.4049/jimmunol.169.8.4288
Gao Y, Ding M, Dong X, Zhang J, Azkur AK, Azkur D, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021; 76(2): 428–455. doi: https://doi.org/10.1111/all.14657
Park A, Iwasaki A. type I and type III interferons – induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020; 27(6): 870–878. doi: 10.1016/j.chom.2020.05.008
Lokugamage KG, Hage A, Vries M de, Valero-Jimenez AM, Schindewolf C, Dittmann M, et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J Virol. 2020; 94(23). doi: 10.1128 / JVI.01410-20
Sun J, Zhuang Z, Zheng J, Li K, Wong RL-Y, Liu D, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. 2020; 182(3): 734-743. e5. doi: 10.1016/j.cell.2020.06.010
Meng Z, Wang T, Chen L, Chen X, Li L, Qin X, et al. The effect of recombinant human interferon alpha nasal drops to prevent COVID-19 pneumonia for medical staff in an epidemic area. Curr Top Med Chem. 2021; 21(10): 920–927. doi: 10.2174/1568026621666210429083050
Zhou Q, Chen V, Shannon CP, Wei X-S, Xiang X, Wang X, et al. Interferon-α2b Treatment for COVID-19. Front Immunol. 2020; 11: 1061. doi: https://doi.org/10.3389/fimmu.2020.01061
Pandit A, Bhalani N, Bhushan BLS, Koradia P, Gargiya S, Bhomia V, et al. Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. Int J Infect Dis. 2021; 105: 516–521. doi: 10.1016/j.ijid.2021.03.015
Wang N, Zhan Y, Zhu L, Hou Z, Liu F, Song P, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020; 28(3): 455-464.e2. doi: https://doi.org/10.1016/j.chom.2020.07.005
Lee AC, Jeong Y, Lee S, Jang H, Zheng A, Kwon S, et al. Nasopharyngeal Type-I interferon for immediately available prophylaxis against emerging respiratory viral infections. Front Immunol. 2021; 12: 660298. doi: 10.3389/fimmu.2021.660298
Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L, et al. A randomized clinical trial of the efficacy and safety of interferon β-1a in treatment of severe COVID-19. Antimicrob Agents Chemother. 2020; 64(9): e01061-20. doi: 10.1128/AAC.01061-20
Hung IFN, Lung KC, Tso EYK, Liu R, Chung TWH, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395(10238): 1695–1704. doi: https://doi.org/10.1016/S0140-6736(20)31042-4
Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021; 9(2): 196–206. doi: https://doi.org/10.1016/S2213-2600(20)30511-7
Feld JJ, Kandel C, Biondi MJ, Kozak RA, Zahoor MA, Lemieux C, et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respir Med. 2021; 9(5) :498–510. doi: https://doi.org/10.1016/S2213-2600(20)30566-X
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2022 Brigitte Ofelia Peña-López, Bladimiro Rincón-Orozco, Ivette Karina Freyle-Román