Importancia de la vigilancia genómica de SARS-CoV-2 en los tiempos de las vacunas contra la COVID-19
PDF

Palabras clave

SARS-CoV-2
Vigilancia genómica
Variante
COVID-19

Cómo citar

Jones-Cifuentes, N. A. ., Peña-López, B. O., & Rincón-Orozco, B. (2022). Importancia de la vigilancia genómica de SARS-CoV-2 en los tiempos de las vacunas contra la COVID-19. Salud UIS, 54. https://doi.org/10.18273/saluduis.54.e:22058

Resumen

La enfermedad por coronavirus 2019 (COVID-19) ha generado un impacto a gran escala en la salud pública mundial debido a su rápida propagación y a su alta capacidad de contagio, adaptación y evolución. En esta revisión se describen las diferencias entre mutaciones, variantes, linajes y cepas de Coronavirus del Síndrome Respiratorio Agudo Severo 2 (SARS-CoV-2); se listan las principales mutaciones presentes en las variantes de interés (VOI por sus siglas en inglés) y variantes de preocupación (VOC por sus siglas en inglés) de SARS-CoV-2 y su distribución geográfica; y finalmente, se analiza la implicación que tienen las nuevas variantes sobre la efectividad de las vacunas, evidenciando la importancia de la vigilancia genómica de SARS-CoV-2 en la era post vacunación.

https://doi.org/10.18273/saluduis.54.e:22058
PDF

Referencias

Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in Wuhan, China: A modeling study. Obstet Gynecol Surv. 2020; 395(10225): 689–697. doi: https://doi.org/10.1016/S0140-6736(20)30260-9

WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. March 29. 2020.

WHO/Europe. WHO/Europe | Coronavirus disease (COVID-19) outbreak - About the virus. 2021 [cited 2021 Sep 26]. Available from: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/novel-coronavirus-2019-ncov

Tang Q, Song Y, Shi M, Cheng Y, Zhang W, Xia XQ. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition. Sci Rep. 2015; 5(17155). doi: https://doi.org/10.1038/srep17155

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. doi: https://doi.org/10.1016/S0140-6736(20)30183-5

Peña López BO, Rincón Orozco B, Castillo León JJ. SARS-CoV-2: generalidades bioquímicas y métodos de diagnóstico. Nova. 2020; 18(35): 11–33. doi: https://doi.org/10.22490/24629448.4183

Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019; 11(1): 59. doi: https://doi.org/10.3390/v11010059

Zhu Z, Zhang Z, Chen W, Cai Z, Ge X, Zhu H, et al. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infect Genet Evol. 2018; 61: 183–184. doi: https://doi.org/10.1016/j.meegid.2018.03.028

GISAID. GISAID - Initiative. [cited 2021 Sep 26]. Available from: https://www.gisaid.org/

Lauring AS, Hodcroft EB. Genetic Variants of SARS-CoV-2 - What Do They Mean? JAMA - J Am Med Assoc. 2021; 325(6): 529–531. https://doi.org/10.1001/jama.2020.27124

Grubaugh ND, Petrone ME, Holmes EC. We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol. 2020; 5(4): 529–530. doi: https://doi.org/10.1038/s41564-020-0690-4

Callaway E. The coronavirus is mutating - does it matter? Nature. 2020; 585 :174–177. doi: https://doi.org/10.1038/d41586-020-02544-6

Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, et al. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell. 2020; 79: 710–727. https://doi.org/10.1016/j.molcel.2020.07.027

Ospina Sánchez JD. Variantes del SARSCoV-2, cambio en el panorama pandémico [Internet]. 2021. Available from: https://www.udea.edu.co/wps/portal/udea/web/inicio/udeanoticias/udea-noticia/!ut/p/z0/fYwxD4IwFIT_igsj6RMRdCQOJsbBwRjoYl7aRh_SvgKFPMFHYyLy-Xu8t0JKUohHY50w0DssJlyJbPrZrtLlkUKR8jSDIrslK7zZL86X0AchPwPTA9Ut60shFTsgnkGUXruAjaDNhgB9r_pztZ8_KwLx4EUYR_Be-1I80x9a286Yk2KsbFoMZgughE7wonuFYkY482NjqHPK4Hl0CyFP4hqxexKQm2/

Racaniello V. Understanding virus isolates, variants, and strains [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.virology.ws/2021/02/25/understanding-virus-isolatesvariants-strains-and-more/

Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19) - StatPearls - NCBI Bookshelf. StatPearls. StatPearls Publishing; 2021. PMID: 32150360.

Konings F, Perkins MD, Kuhn JH, Pallen MJ, Alm EJ, Archer BN, et al. SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat Microbiol. 2021; 6: 821–823. doi: https://www.ncbi.nlm.nih.gov/books/NBK554776/doi:10.1038/s41564-021-00932-w

GISAID. GISAID - Clade and lineage nomenclature aids in genomic epidemiology of active hCoV-19 viruses [Internet]. [cited 2021 Sep 26]. Available from: https://www.gisaid.org/references/statementsclarifications/clade-and-lineage-nomenclatureaids-in-genomic-epidemiology-of-active-hcov-19-viruses/

NextStrain. Updated Nextstrain SARS-CoV-2 clade naming strategy [Internet]. [cited 2021 Sep 26]. Available from: https://nextstrain.org/blog/2021-01-06-updated-SARS-CoV-2-clade-naming

Organización Mundial de la Salud. Seguimiento de las variantes del SARS-CoV-2 [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.who.int/es/activities/tracking-SARS-CoV-2-variants

Yinda CK, Port JR, Bushmaker T, Fischer RJ, Schulz JE, Holbrook MG, et al. Prior aerosol infection with lineage A SARS-CoV-2 variant protects hamsters from disease, but not reinfection with B.1.351 SARS-CoV-2 variant. Emerg Microbes Infect. 2021; 10(1): 1284–1292. doi: https://www.ncbi.nlm.nih.gov/books/NBK554776/ https://doi.org/10.1080/22221751.2021.1943539

CDC-Centers for Disease Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html

COG-UK. COG-UK report on SARS-CoV-2 Spike mutations of interest in the UK | COVID-19 Genomics UK Consortium [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.cogconsortium.uk/?s=COG-UK+report+on+SARSCoV-2+Spike+mutations+of+interest+in+the+UK

Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, MacNeil A, et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep 2021; 70: 95–99. doi: https://doi.org/10.15585/mmwr.mm7003e2

Davies NG, Jarvis CI, van Zandvoort K, Clifford S, Sun FY, Funk S, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021; 593: 270–274. doi: https://doi.org/10.1038/s41586-021-03426-1

Walker AS, Vihta K-D, Gethings O, Pritchard E, Jones J, House T, et al. Increased infections, but not viral burden, with a new SARS-CoV-2 variant. medRxiv. 2021. doi: https://doi.org/10.1101/2021.01.13.21249721

Alpert T, Brito AF, Lasek-Nesselquist E, Rothman J, Valesano AL, MacKay MJ, et al. Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States. Cell. 2021; 184(10): 2595–2604. doi: https://doi.org/10.1016/j.cell.2021.03.061

Tang JW, Tambyah PA, Hui DS. Emergence of a new SARS-CoV-2 variant in the UK. J Infect. 2021; 82(4): e27–28. doi: https://doi.org/10.1016/j.jinf.2020.12.024

Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain reveals constraints on folding and ACE2 Binding. Cell. 2020; 182(5): 1295–1310e20. doi: https://doi.org/10.1016/j.cell.2020.08.012

Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021; 372(6538): 1–9. doi: https://doi.org/10.1126/science.abg3055

Rambaut A, Loman N, Pybus O, Barclay W, Barrett J, Carabelli A, et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology - Virological. Virological.org. 2020.

Kemp SA, Meng B, Ferriera IATM, Datir R, Harvey WT, Collier DA, et al. Recurrent Emergence and Transmission of a SARS-CoV-2 Spike Deletion H69/V70. 2021; 35(13): 109292. doi: https://doi.org/10.1016/j.celrep.2021.109292

Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021; 184(8): 2201–2211. doi: https://doi.org/10.1016/j.cell.2021.02.033

O’Toole Á, Kraemer MUG, Hill V, Pybus OG, Watts A, Bogoch II, et al. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Res. 2021; 6(121). doi: https://doi.org/10.12688/WELLCOMEOPENRES.16661.2

Tang JW, Toovey OTR, Harvey KN, Hui DDS. Introduction of the South African SARS-CoV-2 variant 501Y.V2 into the UK. J Infect. 2021; 82(4): e8–10. doi: https://doi.org/10.1016/j.jinf.2021.01.007

Singh J, Samal J, Kumar V, Sharma J, Agrawal U, Ehtesham NZ, et al. Structure-function analyses of new sars-cov-2 variants b.1.1.7, b.1.351 and b.1.1.28.1: Clinical, diagnostic, therapeutic and public health implications. Viruses. 2021; 13(3): 439. doi: https://doi.org/10.3390/v13030439

Cov-Lineages - Pango Lineages. Cov-Lineages B.1.351 [Internet]. [cited 2021 Sep 26]. Available from: https://cov-lineages.org/global_report_B.1.351.html

Mwenda M, Saasa N, Sinyange N, Busby G, Chipimo PJ, Hendry J, et al. Detection of B.1.351 SARS-CoV-2 Variant Strain — Zambia, December 2020. MMWR Surveill Summ. 2021; 70(8): 280–282. doi: https://doi.org/10.15585/mmwr.mm7008e2

Kim YJ, Jang US, Soh SM, Lee JY, Lee HR. The impact on infectivity and neutralization efficiency of sars-cov-2 lineage b.1.351 pseudovirus. Viruses. 2021; 13(4): 633. doi: https://doi.org/10.3390/v13040633

Fratev F. The N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human derived antibody: A Free energy of perturbation study. bioRxiv [Internet]. 2020 Dec 31 [cited 2021 Sep 26]; 2020.12.23.424283. doi: https://doi.org/10.1101/2020.12.23.424283

Planas D, Bruel T, Grzelak L, Guivel-Benhassine F, Staropoli I, Porrot F, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med. 2021; 27: 917–924. doi: https://doi.org/10.1038/s41591-021-01318-5

Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Evidence of escape of SARSCoV-2 variant B.1.351 from natural and vaccineinduced sera. Cell. 2021; 184(9): 2348. doi: https://doi.org/10.1016/j.cell.2021.02.037

Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, et al. Escape from neutralizing antibodies 1 by SARS-CoV-2 spike protein variants. Elife. 2020; 9: e61312. doi: https://doi.org/10.7554/eLife.61312

Fujino T, Nomoto H, Kutsuna S, Ujiie M, Suzuki T, Sato R, et al. Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg Infect Dis. 2021; 27(4): 1243-1245. doi: https://doi.org/10.3201/eid2704.210138

Faria NR, Claro IM, Candido D, Franco LAM, Andrade PS, Thais M, et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological.Org. 2021.

Voloch CM, da Silva Francisco R, de Almeida LGP, Cardoso CC, Brustolini OJ, Gerber AL, et al. Genomic characterization of a novel SARSCoV-2 lineage from Rio de Janeiro, Brazil. J Virol. 2020; 95(10): e00119-21. doi: https://doi.org/10.1128/JVI.00119-21

Centers for Disease Control and Prevention. Science Brief: Emerging SARS-CoV-2 Variants | CDC [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emergingvariants.html

Cov-Lineages - Pango-lineages. Cov-Lineages P.1 [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://cov-lineages.org/global_report_P.1.html

Imai M, Halfmann PJ, Yamayoshi S, Iwatsuki-Horimoto K, Chiba S, Watanabe T, et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc Natl Acad Sci U S A. 2021; 118(27): e2106535118. doi: https://doi.org/10.1073/pnas.2106535118

Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021; 372(6544). doi: https://doi.org/10.1126/science.abh2644

Janik E, Niemcewicz M, Podogrocki M, Majsterek I, Bijak M. The emerging concern and interest sarscov-2 variants. Pathogens. 2021; 10(6): 633. doi: https://doi.org/10.3390/pathogens10060633

Toovey OTR, Harvey KN, Bird PW, Tang JWTWT. Introduction of Brazilian SARS-CoV-2 484K.V2 related variants into the UK. J Infect. 2021; 82(5): e23–24. doi: https://doi.org/10.1016/j.jinf.2021.01.025

Faria N, Et-al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. virological.org. 2021.

Dejnirattisai W, Zhou D, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021; 184(11): P2939-2954.E9. doi: https://doi.org/10.1016/j.cell.2021.03.055

Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA, et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARSCoV-2 vaccine: an immunological study. The Lancet Microbe. 2021; 2: e527–535 doi: https://doi.org/10.1016/S2666-5247(21)00129-4

Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021; 184(9): 2372-2383.e9. doi: https://doi.org/10.1016/j.cell.2021.03.013

Cov-Lineages - Pango. Cov-Lineages B.1.617.2 [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://cov-lineages.org/global_report_B.1.617.2.html

Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, et al. Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv. 2021. doi: https://doi:https://doi.org/10.1101/2021.04.22.440932

Li B, Deng A, Li K, Hu Y, Li Z, Xiong Q, et al. Viral infection and transmission in a large well-traced outbreak caused by the Delta SARS-CoV-2 variant. virological.org. 2021.

Ferreira I, Datir R, Papa G, Kemp S, Meng B, Rakshit P, et al. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies. bioRxiv. 2021. doi: https://doi.org/10.1101/2021.05.08.443253

Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med 2021; 385: 585–594. doi: https://doi.org/10.1056/NEJMoa2108891

Ashley Hagen MS. How Dangerous is the Delta Variant (B.1.617.2)? American Society for Microbiology. 2021. 63. Araf Y, Akter F, Tang Y, Fatemi R, Parvez MdSA, Zheng C, et al. Omicron variant of SARS‐CoV‐2: Genomics, transmissibility, and responses to current COVID‐19 vaccines. J Med Virol. 2022; 94:1825–32. https://doi.org/10.1002/jmv.27588

Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 2021; 398:2126–8. https://doi.org/10.1016/S0140-6736(21)02758-6

Latif A, Mullen J, Alkuzweny M, Tsueng G, Cano M, Haag E, et al. and the Center for Viral Systems Biology. B.1.1.529 Lineage Report. Alaa outbreak. info, (available at https://outbreak.info/situationreports?pango=B.1.1.529). Accessed 28 April 2022.

Ferré VM, Peiffer-Smadja N, Visseaux B, Descamps D, Ghosn J, Charpentier C. Omicron SARS-CoV-2 variant: What we know and what we don’t. Anaesth Crit Care Pain Med. 2022; 41: 100998. doi: https://doi.org/10.1016/j.accpm.2021.100998

Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 2021; 29: 44-57.e9. doi: https://doi.org/10.1016/j.chom.2020.11.007

Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021; 19: 409–424. doi: https://doi.org/10.1038/s41579-021-00573-0

Desingu PA, Nagarajan K, Dhama K. Emergence of Omicron third lineage BA.3 and its importance. J Med Virol. 2022; 94: 1808–1810. https://doi.org/10.1002/jmv.27601

Chen J, Wei G-W. Omicron BA.2 (B.1.1.529.2): high potential to becoming the next dominating variant. Vaccines 2022; 10(5); 674. doi: https://doi.org/10.48550/arXiv.2202.05031

Li X. Omicron: Call for updated vaccines. J Med Virol 2022; 94:1261–3. https://doi.org/10.1002/jmv.27530

Ren S-Y, Wang W-B, Gao R-D, Zhou A-M. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases 2022; 10: 1–11. doi: https://doi.org/10.12998/wjcc.v10.i1.1

Nemet I, Kliker L, Lustig Y, Zuckerman N, Erster O, Cohen C, et al. Third BNT162b2 Vaccination neutralization of SARS-CoV-2 Omicron Infection. N Engl J Med 2021; doi: https://doi.org/10.1056/NEJMc2119358

Update on Omicron n.d. https://www.who.int/news/item/28-11-2021-update-on-omicron (accessed April 28, 2022).

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 384(5): 403-416. doi: https://doi.org/10.1056/NEJMoa2035389

AstraZeneca. COVID-19 Vaccine AstraZeneca confirms 100% protection against severe disease, hospitalisation and death in the primary analysis of Phase III trials [Internet]. 2021 [cited 2021 Sep 30]. Available from: https://www.astrazeneca.com/media-centre/press-releases/2021/covid-19-vaccine-astrazeneca-confirms-protection-againstsevere-disease-hospitalisation-and-death-in-theprimary-analysis-of-phase-iii-trials.html

Reuters. Sinovac’s COVID shot highly effective against serious illness- Malaysia study | Reuters [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.reuters.com/world/asia-pacific/sinovacs-covid-shot-highly-effective-againstserious-illness-malaysia-study-2021-09-24/

World Health Organization. COVID-19 vaccines [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.who.int/westernpacific/emergencies/covid-19/covid-19-vaccines

Business Insider. COVID Vaccines Compared in 1 Table: Effectiveness, Side Effects, More [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.businessinsider.com/covid-vaccinescompared-vaccine-pfizer-oxford-modernaastrazeneca-side-effects-2021-2

Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N Engl J Med. 2021; 385: 187-189 doi: https://doi.org/10.1056/NEJMc2104974

Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021; 596: 276–280. doi: https://doi.org/10.1038/s41586-021-03777-9

Andrews N et al. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N Engl J Med 2022; [e-pub]. doi: https://doi.org/10.1056/NEJMoa2119451

Sidik SM. Vaccines protect against infection from Omicron subvariant — but not for long. Nature. 2022; doi: https://doi.org/10.1038/d41586-022-00775-3

European Centre for Disease Prevention and Control. SARS-CoV-2 variants of concern as of 23 September 2021 [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern

Romero PE, Dávila-Barclay A, Salvatierra G, González L, Cuicapuza D, Solis L, et al. The Emergence of SARS-CoV-2 Variant Lambda (C.37) in South America. medRxiv. 2021. https://doi.org/10.1101/2021.06.26.21259487

Padilla-Rojas C, Jimenez-Vasquez V, Hurtado V, Mestanza O, Molina IS, Barcena L, et al. Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS-COV-2 lineage in Peru despite circulation of variants of concern. J Med Virol. 2021; 1–5. doi: https://doi.org/10.1002/jmv.27261

Baj A, Novazzi F, Ferrante FD, Genoni A, Cassani G, Prestia M, et al. Introduction of SARS-COV-2 C.37 (WHO VOI lambda) from Peru to Italy. J Med Virol. 2021; 10.1002/jmv.27235. doi: https://doi.org/10.1002/jmv.27235

Latif A, Mullen J, Alkuzweny M, Tsueng G, Cano M, Haag E, Jerry Zhou, Mark Zeller, Emory Hufbauer, Nate Matteson, Chunlei Wu, Kristian G. Andersen, Andrew I. Su, Karthik Gangavarapu, Laura D. Hughes and the C for VSB outbreak. inf. C.37 Lineage Report [Internet]. [cited 2021 Sep 26]. Available from: https://outbreak.info/situationreports?pango=C.37

Laiton-Donato K, Franco-Muñoz C, Álvarez-Díaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Prada DA, et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect Genet Evol. 2021; 95: 105038. doi: 10.1016/j.meegid.2

Álvarez-Díaz DA, Laiton-Donato K, Torres-García OA, Ruiz-Moreno HA, Franco-Muñoz C, Beltran MA, et al. Reduced levels of convalescent neutralizing antibodies against SARS-CoV-2 B.1+L249S+E484K lineage. medRxiv [Internet]. 2021; doi: https://doi.org/10.1101/2021.09.13.21263430

World Health Organization. COVID-19 Weekly Epidemiological Update [Internet]. 2021 Aug [cited 2021 Sep 26]. Available from: https://www.who.int/docs/default-source/coronaviruse/situationreports/20210831_weekly_epi_update_55.pdf

Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada T, Kaneda A, et al. Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera. bioRxiv [Internet]. 2021; doi: https://doi.org/10.1101/2021.09.06.459005

Instituto Nacional de Salud. COVID-19 en Colombia [Internet]. 2021 [cited 2021 Sep 26]. Available from: https://www.ins.gov.co/Noticias/Paginas/coronavirus-genoma.aspx

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Nathalia Andrea Jones-Cifuentes, Brigitte Ofelia Peña-López, Bladimiro Rincón-Orozco

Descargas

Los datos de descargas todavía no están disponibles.