Impacto de la variante de interés Mu en la pandemia de COVID-19 en Colombia
PDF

Cómo citar

Peña-López, B. O., Velasquez-Martínez, M. C., & Rincón-Orozco, B. . (2022). Impacto de la variante de interés Mu en la pandemia de COVID-19 en Colombia . Salud UIS, 54. https://doi.org/10.18273/saluduis.54.e:22060

Resumen

El Coronavirus del Síndrome Respiratorio Agudo Severo 2 es el agente causante de la actual pandemia por Coronavirus 2019 y su genoma ha adquirido mutaciones constantemente desde que fue descrito por primera vez a finales del 2019. El 30 de agosto, la Organización Mundial de la Salud denominó Mu (letra del alfabeto griego) a la variante de interés B.1.621, identificada por primera vez en Colombia, sumándose a lambda, otra variante de interés, y a cinco variantes de preocupación: Alfa, Beta, Gamma, Delta y Omicron. La variante Mu presenta cambios genómicos que afectan la transmisibilidad del virus, la gravedad de la enfermedad y la resistencia a las respuestas inmunitarias inducidas por vacunas, así como la evasión a los métodos de diagnóstico y la susceptibilidad a los medicamentos. Esta revisión describe los aspectos epidemiológicos e inmunológicos más importantes de la variante Mu: los principales mecanismos de evasión de la respuesta inmune; la variación en la eficiencia de las vacunas; y cómo algunas de las mutaciones específicas pueden ser responsables de estos fenómenos.

https://doi.org/10.18273/saluduis.54.e:22060
PDF

Referencias

Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Singh Malik Y, et al. SARS-CoV-2, SARSCoV, and MERS-CoV: a comparative overview. Infez Med. 2020;28(2):174–84. PMID: 32275259 Available from: https://www.infezmed.it/media/

journal/Vol_28_2_2020_7.pdf

Coronavirus Death Rate (COVID-19) - Worldometer [cited 2022 Apr 12]. Available from: https://www. worldometers.info/coronavirus/coronavirus-death-rate/

L’Angiocola PD, Monti M. COVID-19: the critical balance between appropriate governmental restrictions and expected economic, psychological and social consequences in Italy. Are we going in the right direction? Acta Bio Medica Atenei Parm. 2020; 91(2):35. doi: 10.23750/abm.v91i2.9575

Tracking SARS-CoV-2 variants. 2022 [cited 2022 Apr 12]. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

Weekly epidemiological update on COVID-19 - 31 August 2021. 2021. Available from: https://www.who.int/publications/m/item/weeklyepidemiological-update-on-covid-19---31-august-2021

GISAID - hCov19 Variants. 2022 [cited 2022 Apr 15]. Available from: https://www.gisaid.org/hcov19-variants/

B.1.621 Lineage Report. 2022 [cited 2022 Apr 12]. Available from: https://outbreak.info/situationreports?pango=B.1.621

Noticias coronavirus-genoma. 2021 [cited 2021 May 2]. Available from: https://www.ins.gov.co/Noticias/Paginas/coronavirus-genoma.aspx

Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada T, Kaneda A, et al. Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum. N Engl J Med. 2021; 16:385(25): 2397–2399. doi: 10.1056/NEJMc2114706

Nextstrain / ncov / gisaid / south-america. [cited 2022 Apr 12]. Available from: https://nextstrain. org/ncov/gisaid/south-america?dmax=2021-08-21&f_country=Colombia&r=division

Obermeyer F, Jankowiak M, Barkas N, Schaffner SF, Pyle JD, Yurkovetskiy L, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. medRxiv. 2022; 16: 2021.09.07.21263228. doi: https://doi.org/10.1101/2021.09.07.21263228

Figgins MD, Bedford T. SARS-CoV-2 variant dynamics across US states show consistent differences in effective reproduction numbers. medRxiv. 2021. doi: https://doi.org/10.1101/2021.12.09.21267544

BBC News Mundo. Estados Unidos levantará las restricciones para los viajeros que estén vacunados a partir de noviembre - BBC News Mundo. 2021 [cited 2022 Apr 15]; Available from: https://www.bbc.com/mundo/noticias-internacional-58605154

Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 17: 22(12): 757–773. doi: https://doi.org/10.1038/s41576-021-00408-x

Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. Temporal signal and the phylodynamic threshold of SARSCoV-2. Virus Evol. 2020; 1: 6(2). doi: https://doi.org/10.1093/ve/veaa061

SARS-CoV-2 Variants - Stanford Coronavirus Antiviral & Resistance Database (CoVDB). [cited 2022 Apr 15]. Available from: https://covdb.stanford.edu/page/mutation-viewer/#sec_b-1-621

Abdel Latif A, Mullen JL AM et al. Center for Viral Systems Biology. outbreak.info, Lineage Comparison. 2022. Available from: https://outbreak.info/compare-lineages?pango=Mu&gene=S&threshold=75&sub=true&dark=false doi:

1101/2022.01.27.22269965

CoVariants: 21H (Mu). [cited 2022 May 8]. Available from: https://covariants.org/variants/21H.Mu

Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 1: 5(4): 562–569. doi: 10.1038/s41564-020-0688-y

Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021; 19(7): 409. doi: 10.1038/s41579-021-00573-0

McCormick KD, Jacobs JL, Mellors JW. The emerging plasticity of SARS-CoV-2. Science. 2021; 26: 371(6536): 1306–1308. doi: 10.1126/science.abg4493

Barton MI, Macgowan S, Kutuzov M, Dushek O, Barton GJ, Anton Van Der Merwe P. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Elife. 2021; 10. doi: 10.7554/eLife.70658.

ECDC. SARS-CoV-2 variants of concern as of 7 April 2022. [cited 2022 Apr 12]. Available from: https://www.ecdc.europa.eu/en/covid-19/variantsconcern

Rahimi F, Kamali N, Bezmin Abadi AT. The Mu strain: the last but not least circulating ‘variant of interest’ potentially affecting the COVID-19 pandemic. Future Virol. 2021; 17(1): 5–8. doi: 10.2217/fvl-2021-0269

Abdel Latif A MJA et al. Center for Viral Systems Biology. outbreak.info. Mu Variant Report. [cited 2022 Apr 15]. Available from: https://www.outbreak.info/situation-reports/Mu

CoVariants: Shared Mutations. [cited 2022 Apr 15]. Available from: https://covariants.org/sharedmutations

Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Alshammary H, Amoako AA, et al. SARSCoV- 2 spike E484K mutation reduces antibody neutralisation. The Lancet Microbe. 2021; 2(7): e283. doi: 10.1016/S2666-5247(21)00068-9

Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada T, Kaneda A, et al. Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera. bioRxiv 2021.09.06.459005; doi: https://doi.org/10.1101/2021.09.06.459005

Miyakawa K, Jeremiah SS, Kato H, Ryo A. Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv. 2021: 26:2021.09.23.21264014. doi: https://doi.org/10.1101/2021.09.23.21264014

de Oliveira-Filho EF, Rincon-Orozco B, Jones-Cifuentes N, Peña-López B, Mühlemann B, Drosten

C, et al. Effectiveness of Naturally Acquired and Vaccine-Induced Immune Responses to SARSCoV-2 Mu Variant. Emerg Infect Dis. 2022; 13: 28(8). doi: 10.3201/eid2808.220584

Epidemiología genómica del SARS-CoV-2 con submuestreo global. 2021 [cited 2022 Apr 12]. Available from: https://nextstrain.org/ncov/gisaid/global?branches=hide&l=scatter&scatterX=mutation al_fitness&scatterY=clade_membership

Kistler KE, Huddleston J, Bedford T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe. 2022; 30(4): 545-555. doi: 10.1016/j.chom.2022.03.018

Ferrareze PAG, Franceschi VB, Mayer A de M, Caldana GD, Zimerman RA, Thompson CE. E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol. 2021; 1: 93: 104941. doi: https://doi.org/10.1016/j.meegid.2021.104941

Resende PC, Gräf T, Paixão ACD, Appolinario L, Lopes RS, Mendonça AC da F, et al. A potential sarscov-2 variant of interest (Voi) harboring mutation e484k in the spike protein was identified within lineage b.1.1.33 circulating in Brazil. Viruses. 2021; 13(5): 724. doi: 10.3390/v13050724

Uwamino Y, Yokoyama T, Shimura T, Nishimura T, Sato Y, Wakui M, et al. The effect of the E484K mutation of SARS-CoV-2 on the neutralizing activity of antibodies from BNT162b2 vaccinated individuals. Vaccine. 2022; 3; 40(13): 1928. doi:

1016/j.vaccine.2022.02.047

Planas D, Bruel T, Grzelak L, Guivel-Benhassine F, Staropoli I, Porrot F, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med. 2021; 26: 27(5): 917–924. doi: https://doi.org/10.1038/s41591-021-01318-5

Zhang M, Gong Y, Jiao S. Neutralization heterogeneity of circulating SARS-CoV-2 variants to sera elicited by a vaccinee or convalescent. Future Virol. 2022; 17(6): 403–413. doi: 10.2217fvl-2021-0100

Janssen Biologics. COVID-19 VACCINE JANSSEN® Ad26.COV2.S DATA SHEET. [cited 2022 May 8]. Available from: https://

www.medsafe.govt.nz/Profs/Datasheet/c/COVID19VaccineJansseninj.pdf

Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, et al. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. BMJ. 2021; 15: 375. doi: https://doi.org/10.1136/bmj-2021-068848

WHO. Declaración provisional sobre la inmunidad híbrida y el aumento de las tasas de seroprevalencia de la población. [cited 2022 Aug 20]. Available from: https://www.who.int/news/item/01-06-2022-interim-statement-on-hybrid-immunity-andincreasing-population-seroprevalence-rates

Collier DA, De Marco A, Ferreira IATM, Meng B, Datir R, Walls AC, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021; 593: 136-141. doi: https://doi.org/10.1038/s41586-021-03412-7

Riepler L, Rössler A, Falch A, Volland A, Borena W, Kimpel J, et al. Comparison of four SARS-CoV-2 Neutralization Assays. Vaccines. 2021; 9(1):1–14. doi: 10.3390/vaccines9010013

COVID-19 Detection | cPassTM Kit Technology. [cited 2022 Aug 20]. Available from: https://www.genscript.com/covid-19-detection-cpass.html

Almahboub SA, Algaissi A, Alfaleh MA, ElAssouli MZ, Hashem AM. Evaluation of Neutralizing Antibodies Against Highly Pathogenic Coronaviruses: A Detailed Protocol for a Rapid Evaluation of Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudovirus-Based Assay. Front Microbiol. 2020; 11: 2020. doi: https://doi.org/10.3389/fmicb.2020.02020

Donofrio G, Franceschi V, Macchi F, Russo L, Rocci A, Marchica V, et al. A simplified SARSCoV- 2 pseudovirus neutralization assay. Vaccines. 2021; 9(4): 389. doi: 10.3390/vaccines9040389

Neerukonda SN, Vassell R, Herrup R, Liu S, Wang T, Takeda K, et al. Establishment of a wellcharacterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS One.

; 16(3): e0248348. doi: 10.1371/journal.pone.0248348. eCollection 2021

Wang Y, Ma Y, Xu Y, Liu J, Li X, Chen Y, et al. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg Microbes Infect. 2022; 11(1): 424. doi: 10.1080/22221751.2022.2027219

Deshpande GR, Sapkal GN, Tilekar BN, Yadav PD, Gurav Y, Gaikwad S, et al. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 patients. Indian J Med Res. 2020; 152(1–2): 82. doi: 10.4103/ijmr.IJMR_2382_20.

Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A longitudinal study of SARSCoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021; 18(2): 318. doi:

1038/s41423-020-00588-2

Fouchier RAM, Smith DJ. Use of Antigenic Cartography in Vaccine Seed Strain Selection. BioOne. 2010; 54(1 Suppl): 220-223. doi: 10.1637/8740-032509-ResNote.1

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Brigitte Ofelia Peña-López, María Carolina Velasquez-Martínez, Bladimiro Rincón-Orozco

Descargas

Los datos de descargas todavía no están disponibles.