Impact of the variant of interest Mu on the COVID-19 pandemic in Colombia
PDF (Español (España))

How to Cite

Peña-López, B. O., Velasquez-Martínez, M. C., & Rincón-Orozco, B. . (2022). Impact of the variant of interest Mu on the COVID-19 pandemic in Colombia. Salud UIS, 54. https://doi.org/10.18273/saluduis.54.e:22060

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of the current 2019 Coronavirus pandemic and its genome has constantly acquired mutations since it was first described at the end of 2019. On August 30, the World Health Organization named Mu (letter of the Greek alphabet) to the variant of interest B.1.621, identified for the first time in Colombia, joining lambda, another variant of interest, and five variants of concern: Alpha, Beta, Gamma, Delta and Omicron. The Mu variant exhibits genomic changes that affect virus transmissibility, disease severity, and resistance to vaccine-induced immune responses, as well as diagnostic evasion and drug susceptibility. This review describes the most important epidemiological and immunological aspects of the Mu variant: the main mechanisms of evasion of the immune response; the variation in the efficiency of the vaccines; and how some of the specific mutations may be responsible for these phenomena.

https://doi.org/10.18273/saluduis.54.e:22060
PDF (Español (España))

References

Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Singh Malik Y, et al. SARS-CoV-2, SARSCoV, and MERS-CoV: a comparative overview. Infez Med. 2020;28(2):174–84. PMID: 32275259 Available from: https://www.infezmed.it/media/journal/Vol_28_2_2020_7.pdf

Coronavirus Death Rate (COVID-19) - Worldometer [cited 2022 Apr 12]. Available from: https://www.worldometers.info/coronavirus/coronavirus-death-rate/

L’Angiocola PD, Monti M. COVID-19: the critical balance between appropriate governmental restrictions and expected economic, psychological and social consequences in Italy. Are we going in the right direction? Acta Bio Medica Atenei Parm. 2020; 91(2):35. doi: 10.23750/abm.v91i2.9575

Tracking SARS-CoV-2 variants. 2022 [cited 2022 Apr 12]. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

Weekly epidemiological update on COVID-19 - 31 August 2021. 2021. Available from: https://www.who.int/publications/m/item/weeklyepidemiological-update-on-covid-19---31-august-2021

GISAID - hCov19 Variants. 2022 [cited 2022 Apr 15]. Available from: https://www.gisaid.org/hcov19-variants/

B.1.621 Lineage Report. 2022 [cited 2022 Apr 12]. Available from: https://outbreak.info/situationreports?pango=B.1.621

Noticias coronavirus-genoma. 2021 [cited 2021 May 2]. Available from: https://www.ins.gov.co/Noticias/Paginas/coronavirus-genoma.aspx

Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada T, Kaneda A, et al. Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum. N Engl J Med. 2021; 16:385(25): 2397–2399. doi: 10.1056/NEJMc2114706

Nextstrain / ncov / gisaid / south-america. [cited 2022 Apr 12]. Available from: https://nextstrain.org/ncov/gisaid/south-america?dmax=2021-08-21&f_country=Colombia&r=division

Obermeyer F, Jankowiak M, Barkas N, Schaffner SF, Pyle JD, Yurkovetskiy L, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. medRxiv. 2022; 16: 2021.09.07.21263228. doi: https://doi.org/10.1101/2021.09.07.21263228

Figgins MD, Bedford T. SARS-CoV-2 variant dynamics across US states show consistent differences in effective reproduction numbers. medRxiv. 2021. doi: https://doi.org/10.1101/2021.12.09.21267544

BBC News Mundo. Estados Unidos levantará las restricciones para los viajeros que estén vacunados a partir de noviembre - BBC News Mundo. 2021 [cited 2022 Apr 15]; Available from: https://www.bbc.com/mundo/noticias-internacional-58605154

Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 17: 22(12): 757–773. doi: https://doi.org/10.1038/s41576-021-00408-x

Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. Temporal signal and the phylodynamic threshold of SARSCoV-2. Virus Evol. 2020; 1: 6(2). doi: https://doi.org/10.1093/ve/veaa061

SARS-CoV-2 Variants - Stanford Coronavirus Antiviral & Resistance Database (CoVDB). [cited 2022 Apr 15]. Available from: https://covdb.stanford.edu/page/mutation-viewer/#sec_b-1-621

Abdel Latif A, Mullen JL AM et al. Center for Viral Systems Biology. outbreak.info, Lineage Comparison. 2022. Available from: https://outbreak.info/compare-lineages?pango=Mu&gene=S&threshold=75&sub=true&dark=false doi: 10.1101/2022.01.27.22269965

CoVariants: 21H (Mu). [cited 2022 May 8]. Available from: https://covariants.org/variants/21H.Mu

Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 1: 5(4): 562–569. doi: 10.1038/s41564-020-0688-y

Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021; 19(7): 409. doi: 10.1038/s41579-021-00573-0

McCormick KD, Jacobs JL, Mellors JW. The emerging plasticity of SARS-CoV-2. Science. 2021; 26: 371(6536): 1306–1308. doi: 10.1126/science.abg4493

Barton MI, Macgowan S, Kutuzov M, Dushek O, Barton GJ, Anton Van Der Merwe P. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Elife. 2021; 10. doi: 10.7554/eLife.70658.

ECDC. SARS-CoV-2 variants of concern as of 7 April 2022. [cited 2022 Apr 12]. Available from: https://www.ecdc.europa.eu/en/covid-19/variantsconcern

Rahimi F, Kamali N, Bezmin Abadi AT. The Mu strain: the last but not least circulating ‘variant of interest’ potentially affecting the COVID-19 pandemic. Future Virol. 2021; 17(1): 5–8. doi: 10.2217/fvl-2021-0269

Abdel Latif A MJA et al. Center for Viral Systems Biology. outbreak.info. Mu Variant Report. [cited 2022 Apr 15]. Available from: https://www.outbreak.info/situation-reports/Mu

CoVariants: Shared Mutations. [cited 2022 Apr 15]. Available from: https://covariants.org/sharedmutations

Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Alshammary H, Amoako AA, et al. SARSCoV- 2 spike E484K mutation reduces antibody neutralisation. The Lancet Microbe. 2021; 2(7): e283. doi: 10.1016/S2666-5247(21)00068-9

Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada T, Kaneda A, et al. Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera. bioRxiv 2021.09.06.459005; doi: https://doi.org/10.1101/2021.09.06.459005

Miyakawa K, Jeremiah SS, Kato H, Ryo A. Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv. 2021: 26:2021.09.23.21264014. doi: https://doi.org/10.1101/2021.09.23.21264014

de Oliveira-Filho EF, Rincon-Orozco B, Jones-Cifuentes N, Peña-López B, Mühlemann B, Drosten C, et al. Effectiveness of Naturally Acquired and Vaccine-Induced Immune Responses to SARSCoV-2 Mu Variant. Emerg Infect Dis. 2022; 13: 28(8). doi: 10.3201/eid2808.220584

Epidemiología genómica del SARS-CoV-2 con submuestreo global. 2021 [cited 2022 Apr 12]. Available from: https://nextstrain.org/ncov/gisaid/global?branches=hide&l=scatter&scatterX=mutational_fitness&scatterY=clade_membership

Kistler KE, Huddleston J, Bedford T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe. 2022; 30(4): 545-555. doi: 10.1016/j.chom.2022.03.018

Ferrareze PAG, Franceschi VB, Mayer A de M, Caldana GD, Zimerman RA, Thompson CE. E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol. 2021; 1: 93: 104941. doi: https://doi.org/10.1016/j.meegid.2021.104941

Resende PC, Gräf T, Paixão ACD, Appolinario L, Lopes RS, Mendonça AC da F, et al. A potential sarscov-2 variant of interest (Voi) harboring mutation e484k in the spike protein was identified within lineage b.1.1.33 circulating in Brazil. Viruses. 2021; 13(5): 724. doi: 10.3390/v13050724

Uwamino Y, Yokoyama T, Shimura T, Nishimura T, Sato Y, Wakui M, et al. The effect of the E484K mutation of SARS-CoV-2 on the neutralizing activity of antibodies from BNT162b2 vaccinated individuals. Vaccine. 2022; 3; 40(13): 1928. doi: 10.1016/j.vaccine.2022.02.047

Planas D, Bruel T, Grzelak L, Guivel-Benhassine F, Staropoli I, Porrot F, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med. 2021; 26: 27(5): 917–924. doi: https://doi.org/10.1038/s41591-021-01318-5

Zhang M, Gong Y, Jiao S. Neutralization heterogeneity of circulating SARS-CoV-2 variants to sera elicited by a vaccinee or convalescent. Future Virol. 2022; 17(6): 403–413. doi: 10.2217fvl-2021-0100

Janssen Biologics. COVID-19 VACCINE JANSSEN® Ad26.COV2.S DATA SHEET. [cited 2022 May 8]. Available from: https://www.medsafe.govt.nz/Profs/Datasheet/c/COVID19VaccineJansseninj.pdf

Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, et al. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. BMJ. 2021; 15: 375. doi: https://doi.org/10.1136/bmj-2021-068848

WHO. Declaración provisional sobre la inmunidad híbrida y el aumento de las tasas de seroprevalencia de la población. [cited 2022 Aug 20]. Available from: https://www.who.int/news/item/01-06-2022-interim-statement-on-hybrid-immunity-andincreasing-population-seroprevalence-rates

Collier DA, De Marco A, Ferreira IATM, Meng B, Datir R, Walls AC, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021; 593: 136-141. doi: https://doi.org/10.1038/s41586-021-03412-7

Riepler L, Rössler A, Falch A, Volland A, Borena W, Kimpel J, et al. Comparison of four SARS-CoV-2 Neutralization Assays. Vaccines. 2021; 9(1):1–14. doi: 10.3390/vaccines9010013

COVID-19 Detection | cPassTM Kit Technology. [cited 2022 Aug 20]. Available from: https://www.genscript.com/covid-19-detection-cpass.html

Almahboub SA, Algaissi A, Alfaleh MA, ElAssouli MZ, Hashem AM. Evaluation of Neutralizing Antibodies Against Highly Pathogenic Coronaviruses: A Detailed Protocol for a Rapid Evaluation of Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudovirus-Based Assay. Front Microbiol. 2020; 11: 2020. doi: https://doi.org/10.3389/fmicb.2020.02020

Donofrio G, Franceschi V, Macchi F, Russo L, Rocci A, Marchica V, et al. A simplified SARSCoV- 2 pseudovirus neutralization assay. Vaccines. 2021; 9(4): 389. doi: 10.3390/vaccines9040389

Neerukonda SN, Vassell R, Herrup R, Liu S, Wang T, Takeda K, et al. Establishment of a wellcharacterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS One. 2021; 16(3): e0248348. doi: 10.1371/journal.pone.0248348. eCollection 2021

Wang Y, Ma Y, Xu Y, Liu J, Li X, Chen Y, et al. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg Microbes Infect. 2022; 11(1): 424. doi: 10.1080/22221751.2022.2027219

Deshpande GR, Sapkal GN, Tilekar BN, Yadav PD, Gurav Y, Gaikwad S, et al. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 patients. Indian J Med Res. 2020; 152(1–2): 82. doi: 10.4103/ijmr.IJMR_2382_20.

Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A longitudinal study of SARSCoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021; 18(2): 318. doi: 10.1038/s41423-020-00588-2

Fouchier RAM, Smith DJ. Use of Antigenic Cartography in Vaccine Seed Strain Selection. BioOne. 2010; 54(1 Suppl): 220-223. doi: 10.1637/8740-032509-ResNote.1

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Brigitte Ofelia Peña-López, María Carolina Velasquez-Martínez, Bladimiro Rincón-Orozco

Downloads

Download data is not yet available.