Importancia de los interferones tipo I en la respuesta inmune antiviral contra el Virus del Papiloma Humano
pdf

Palabras clave

VPH
Neoplasias del Cuello Uterino
Interferones Tipo I
Sistema Inmunológico

Cómo citar

Peña-López, B. O., & Rincón-Orozco, B. (2021). Importancia de los interferones tipo I en la respuesta inmune antiviral contra el Virus del Papiloma Humano. Salud UIS, 53. https://doi.org/10.18273/Saluduis.53.e:21034

Resumen

Los interferones (IFNs) son citoquinas fundamentales en la modulación de la inmunidad innata y adaptativa del hospedero, el papel de los IFNs tipo I en el control de la infección por el Virus del Papiloma Humano (VPH) es crucial para una eficiente respuesta antiviral del huésped. Esta revisión profundiza sobre las funciones de los IFNs tipo I en la infección causada por el VPH y los mecanismos de evasión de este virus para inactivar los IFNs tipo I, todos estos mecanismos necesarios para el desarrollo y progresión de lesiones malignas en los tejidos infectados por el VPH.

https://doi.org/10.18273/Saluduis.53.e:21034
pdf

Referencias

Boccardo E, Lepique AP, Villa LL. The role of inflammation in HPV carcinogenesis. Carcinogenesis. 2010; 31(11): 1905-1912. doi: https://doi.org/10.1093/carcin/bgq176

zur Hausen H. Papillomavirus infections — a major cause of human cancers. Biochim Biophys Acta Rev Cancer. 1996; 1288(2): F55-F78. doi: https://doi.org/10.1016/0304-419X(96)00020-0

Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses. 2013; 5(11): 2624-2642. doi: https://doi.org/10.3390/v5112624

Baron S, Dianzani F. The interferons: a biological system with therapeutic potential in viral infections. Antiviral Res. 1994; 24(2-3): 97-110. doi: https://doi.org/10.1016/0166-3542(94)90058-2

LaFleur DW, Nardelli B, Tsareva T, Mather D, Feng P, Semenuk M, et al. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem. 2001; 276(43): 39765-39771. doi: https://doi.org/10.1074/jbc.M102502200

Reiser J, Hurst J, Voges M, Krauss P, Münch P, Iftner T, et al. High-Risk Human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J Virol. 2011; 85(21): 11372-11380. doi: https://doi.org/10.1128/JVI.05279-11

Buontempo PJ, Jubin RG, Buontempo CA, Wagner NE, Reyes GR, Baroudy BM. Antiviral activity of transiently expressed IFN-κ is cell-associated. J Interf Cytokine Res. 2006; 26(1): 40-52. doi: https://doi.org/10.1089/jir.2006.26.40

Fung KY, Mangan NE, Cumming H, Horvat JC, Mayall JR, Stifter SA, et al. Interferon-ɛ protects the female reproductive tract from viral and bacterial infection. Science. 2013; 339(6123): 1088-1092. doi: https://doi.org/10.1126/science.1233321

Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Vol. 231, Virus Research. Elsevier B.V. 2017; 231: 21-33. doi: https://doi.org/10.1016/j.virusres.2016.11.023

zur Hausen H. Cervical carcinoma and human Papillomavirus: On the road to preventing a major human cancer. JNCI J Natl Cancer Inst. 2001; 93(4): 252-253. doi: 10.1093/jnci/93.4.252

DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7(1): 11-20. doi: https://doi.org/10.1016/j.cmet.2007.10.002

Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011; 144(5): 646-674. doi: https://doi.org/10.1016/j.cell.2011.02.013

Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, et al. Epigenetic Silencing of Interferon in Human Papillomavirus Type 16-Positive Cells. Cancer Res. 2009; 69(22): 8718-8725. doi: https://doi.org/10.1158/0008-5472.CAN-09-0550

Hong S, Mehta KP, Laimins LA. Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance. J Virol. 2011; 85(18): 9486-9494. doi: https://doi.org/10.1128/JVI.05007-11

Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015; 35: S185-S198. doi: https://doi.org/10.1016/j.semcancer.2015.03.004

Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biol Ther. 2010; 10(10): 961-978. doi: https://doi.org/10.4161/cbt.10.10.13923

Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens--Part B: biological agents. Lancet Oncol. 2009; 10(4): 321-322. doi: https://doi.org/10.1016/S1470-2045(09)70096-8

zur Hausen H. The Search for Infectious Causes of Human Cancers: Where and Why (Nobel Lecture). Angew Chemie Int Ed. 2009; 48(32): 5798-5808. doi: https://doi.org/10.1002/anie.200901917

McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for research on cancer, WHO Press, 2015. Adv Nutr.;7(2): 418-419. doi: 10.3945/an.116.012211

Organización Mundial de la Salud. Papilomavirus humanos (PVH) y cáncer cervicouterino 2019.https://www.who.int/es/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer

Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010; 117(2 Suppl): S5-10. doi: https://doi.org/10.1016/j.ygyno.2010.01.024

Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012; 30(Suppl 5): F55-F70. doi: https://doi.org/10.1016/j.vaccine.2012.06.083

zur Hausen H. Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 2009; 384(2): 260-265. doi: https://doi.org/10.1016/j.virol.2008.11.046

ICO/IARC Information Centre on HPV and Cancer. Human Papillomavirus and Related Diseases Report AMERICAS. 2019. www.hpvcentre.net

ICO/IARC Information Centre on HPV and Cancer. Human Papillomavirus and Related Diseases Report COLOMBIA. 2019. www.hpvcentre.net

Instituto Nacional de Salud. Boletín Epidemiológico Semanal. Mortalidad perinatal y neonatal. 2018. https://www.ins.gov.co/buscador-eventos/Informesdeevento/C%C3%81NCER%20DE%20MAMA%20Y%20CUELLO%20UTERINO_2018.pdf

Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B Biol Sci. 1957; 147(927): 258-267. doi: https://doi.org/10.1098/rspb.1957.0048

Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008; 8(7): 559-568. doi: https://doi.org/10.1038/nri2314

Pestka S. The interferons: 50 years after their discovery, there is much more to learn. J Biol Chem. 2007; 282(28): 20047-20051. doi: https://doi.org/10.1074/jbc.R700004200

Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011; 472(7344): 481-485. doi: https://doi.org/10.1038/nature09907

Veer MJ de, Holko M, Frevel M, Walker E, Der S, Paranjape JM, et al. Functional classification of interferon‐stimulated genes identified using microarrays. J Leukoc Biol. 2001; 69(6): 912-920. doi: https://doi.org/10.1189/jlb.69.6.912

Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA. 1998; 95(26): 15623-15628. doi: https://doi.org/10.1073/pnas.95.26.15623

Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998; 67(1): 227264. doi: 10.1146/annurev.biochem.67.1.227

Marrero-Rodríguez D, Baeza-Xochihua V, Taniguchi-Ponciano K, Huerta-Padilla V, Ponce-Navarrete G, Mantilla A, et al. Interferon epsilon mRNA expression could represent a potential molecular marker in cervical cancer. Int J Clin Exp Pathol. 2018; 11(4): 1979-1988. PMCID: PMC6958218

Song J, Guan M, Zhao Z, Zhang J. Type I interferons function as autocrine and paracrine factors to induce autotaxin in response to TLR activation. PLoS One. 2015; 10(8): e0136629. doi: 10.1371/journal.pone.0136629

Weiss DL. Interferons and Interferon Inducers. JAMA J Am Med Assoc. 1973; 226(5): 570. doi:10.1001/jama.1973.03230050048027

Wheelock EF. Interferon-Like virus-inhibitor induced in human leukocytes by Phytohemagglutinin. Science. 1965; 149(3681): 310-311. doi: 10.1126/science.149.3681.310

Shiba M, Nonomura N, Nakai Y, Nakayama M, Takayama H, Inoue H, et al. Type-I interferon receptor expression: Its circadian rhythm and downregulation after interferon-α administration in peripheral blood cells from renal cancer patients. Int J Urol. 2009;16(4): 356-369. doi: https://doi.org/10.1111/j.1442-2042.2009.02265.x

van Boxel-Dezaire AHH, Rani MRS, Stark GR. Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity. 2006; 25(3): 361-372. doi: 10.1016/j.immuni.2006.08.014

Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003; 4(1): 69-77. doi: 10.1038/ni875

Ank N, West H, Paludan SR. IFN-λ: Novel antiviral cytokines. J Interf Cytokine Res. 2006; 26(6): 373-379. doi: https://doi.org/10.1089/jir.2006.26.373

Vilček J. Novel interferons. Nat Immunol. 2003; 4(1): 8-9. doi: https://doi.org/10.1038/ni0103-8

McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015; 15(2): 87-103. doi: https://doi.org/10.1038/nri3787

Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 14(1): 36-49. doi: https://doi.org/10.1038/nri3581

Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol. 2002; 14(4): 432-436. doi: 10.1016/s0952-7915(02)00354-0

Foster GR, Rodrigues O, Ghouze F, Schulte-Frohlinde E, Testa D, Liao MJ, et al. Different relative activities of human cell-derived interferon-α subtypes: IFN-α8 has very high antiviral potency. J Interf Cytokine Res. 1996; 16(12): 1027-1033. doi: https://doi.org/10.1089/jir.1996.16.1027

Ortaldo JR, Herberman RB, Harvey C, Osheroff P, Pan YC, Kelder B, et al. A species of human α interferon that lacks the ability to boost human natural killer activity. Proc Natl Acad Sci USA. 1984; 81(15): 4926-4929. doi: 10.1073/pnas.81.15.4926

Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2(10):727–39. doi: 10.1038/nrc905

Greiner JW, Hand PH, Schlom J, Noguchi P, Fisher PB, Pestka S. Enhanced Expression of Surface Tumor-associated Antigens on Human Breast and Colon Tumor Cells after Recombinant Human Leukocyte α-Interferon Treatment. Cancer Res. 1984;44(8):3208–14. PMID: 6744259

Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003; 8(3): 237-249. doi: doi: 10.1023/a:1023668705040.

Yu Q, Katlinskaya YV., Carbone CJ, Zhao B, Katlinski KV, Zheng H, et al. DNA-Damage-Induced Type I Interferon promotes senescence and inhibits stem cell function. Cell Rep. 2015; 11(5): 785-797. doi: 10.1016/j.celrep.2015.03.06952. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014; 32: 513-545. doi: 10.1146/annurev-immunol-032713-120231 53. Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res. 2015; 35(4): 252-264. doi: 10.1089/jir.2014.0227

Hermann P, Rubio M, Nakajima T, Delespesse G, Sarfati M. IFN-alpha priming of human monocytes differentially regulates gram-positive and gram-negative bacteria-induced IL-10 release and selectively enhances IL-12p70, CD80, and MHC class I expression. J Immunol. 1998; 161(4): 2011-2018.

Day SL, Ramshaw IA, Ramsay AJ, Ranasinghe C. Differential effects of the type I interferons alpha4, beta, and epsilon on antiviral activity and vaccine efficacy. J Immunol. 2008;180(11): 7158-7166. doi: 10.4049/jimmunol.180.11.7158

Loeb KR, Haas AL. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem. 1992; 267(11): 7806-7813.

Vladimer GI, Górna MW, Superti-Furga G. IFITs: Emerging Roles as Key Anti-Viral Proteins. Front Immunol. 2014; 5: 94. doi: 10.3389/fimmu.2014.00094

Sedger LM. microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol. 2013; 56(4): 781-793. doi: 10.1016/j.molimm.2013.07.009

Raniga K, Liang C, Raniga K, Liang C. Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses. 2018; 10(1): 36.

Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006; 110(5): 525-541. doi: 10.1042/CS20050369

Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015; 25(Suppl 1): 2-23. doi: 10.1002/rmv.1822 62. Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T, et al. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol. 2003; 77(19): 10186-10201. doi: 10.1128/jvi.77.19.10186-10201.2003

McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13(4) :e1006211. doi: 10.1371/journal.ppat.1006211

Yu T, Ferber MJ, Cheung TH, Chung TKH, Wong YF, Smith DI. The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet. 2005;158(1):27–34. doi: 10.1016/j.cancergencyto.2004.08.021

Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 2007; 212(4): 356-67. Available from: http://doi.wiley.com/10.1002/path.2192

Mesri EA, Feitelson MA, Munger K. Human Viral Oncogenesis: A Cancer Hallmarks Analysis. Cell Host Microbe. 2014; 15(3):266-282. doi: 10.1016/j.chom.2014.02.011

de Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Vol. 47, Best Practice and Research: Clinical Obstetrics and Gynaecology. Bailliere Tindall Ltd; 2018. p. 2–13. doi: 10.1016/j.bpobgyn.2017.08.015

Schlecht NF, Kulaga S, Robitaille J, Ferreira S, Santos M, Miyamura RA, et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. J Am Med Assoc. 2001; 286(24): 3106-3114. doi: 10.1001/jama.286.24.3106

Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007; 370(9590): 890-907. doi: 10.1016/S0140-6736(07)61416-0

Roman A, Munger K. The papillomavirus E7 proteins. Virology. 2013; 445(0): 138-168. doi: 10.1016/j.virol.2013.04.013

Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology. 2013;445(1–2):115–37. doi: 10.1016/j.virol.2013.04.026

DiMaio D, Petti LM. The E5 proteins. Virology. 2013; 445(1–2): 99-114. doi: 10.1016/j.virol.2013.05.00 73. Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS, et al. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ. Virology. 2003; 310(1): 100-18. doi: 10.1016/s0042-6822(03)00103-x

Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63(6): 1129-1136. doi: 10.1016/0092-8674(90)90409-8

Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 1991; 10(13): 4129-4135.

Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol. 2003; 77(12): 6957-6564. doi: 10.1128/jvi.77.12.6957-6964.2003

Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996; 380(6569): 79-82. doi: 10.1038/380079a0

Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME, et al. The PDZ binding motif of human Papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol. 2008; 82(5): 2493-2500. doi: 10.1128/JVI.02188-07

Talora C, Sgroi DC, Crum CP, Paolo Dotto G. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002; 16(17): 2252-2263. doi: 10.1101/gad.988902

Kinoshita T, Shirasawa H, Shino Y, Moriya H, Desbarats L, Eilers M, et al. Transactivation of prothymosin α and c-myc promoters by human papillomavirus type 16 E6 protein. Virology. 1997; 232(1): 53-61. doi: 10.1006/viro.1997.8536

McLaughlin-Drubin ME, Meyers J, Munger K. Cancer associated human papillomaviruses. Curr Opin Virol. 2012; 2(4): 459-466. doi: 10.1016/j.coviro.2012.05.004

Moody CA, Laimins LA. Human papillomavirus oncoproteins: Pathways to transformation. Nat Rev Cancer. 2010; 10(8): 550-560. doi: 10.1038/nrc2886

Wang YW, Chang HS, Lin CH, Yu WCY. HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity. Int J Biochem Cell Biol. 2007; 39(2): 402-412. doi: 10.1016/j.biocel.2006.09.006

Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Dürr P. Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A. 1999; 96(4): 1291-1296. doi: 10.1073/pnas.96.4.1291

Hellner K, Mar J, Fang F, Quackenbush J, Münger K. HPV16 E7 oncogene expression in normal human epithelial cells causes molecular changes indicative of an epithelial to mesenchymal transition. Virology. 2009; 391(1): 57-63. doi: 10.1016/j.virol.2009.05.036

McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology. 2009; 384(2): 335-344. doi: 10.1016/j.virol.2008.10.006

Chen W, Li F, Mead L, White H, Walker J, Ingram DA, et al. Human papillomavirus causes an angiogenic switch in keratinocytes which is sufficient to alter endothelial cell behavior. Virology. 2007; 367(1): 168-174. doi: 10.1016/j.virol.2007.05.030

Pai SI. Mission impossible: How HPV-associated head and neck cancers escape a primed immune response. Oral Oncol. 2013; 49(8): 723-725. doi: 10.1016/j.oraloncology.2013.03.453

Bordignon V, Di Domenico EG, Trento E, D’Agosto G, Cavallo I, Pontone M, et al. How human papillomavirus replication and immune evasion strategies take advantage of the host DNA damage repair machinery. Viruses. 2017; 9(12): 390. doi: 10.3390/v9120390

Beglin M, Melar-New M, Laimins L. Human papillomaviruses and the interferon response. J Interf Cytokine Res. 2009; 29(9): 629-635. doi: 10.1089/jir.2009.0075

Fisher C. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation. J Clin Med. 2015;4(2):204–30. doi: 10.3390/jcm4020204

Hong S, Laimins LA. The JAK-STAT transcriptional regulator, STAT-5, Activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog. 2013; 9(4): e1003295. doi: 10.1371/journal.ppat.1003295

Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-α. Oncogene. 1999; 18(42): 5727-5737. doi: 10.1038/sj.onc.1202960

Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagunoff M. Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi’s Sarcoma-Associated Herpesvirus Lytic replication. J Virol. 2017; 91(10). doi: 10.1128/JVI.02237-16

Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. Virgin SW, editor. PLoS Biol. 2011; 9(3): e1000598.

Civra A, Cagno V, Donalisio M, Biasi F, Leonarduzzi G, Poli G, et al. Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci Rep. 2015; 4(1): 7487. doi: 10.1038/srep07487

Eagle H, Habel K. The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell. J Exp Med. 1956; 104(2): 271-287. doi: 10.1084/jem.104.2.271.

Warburg O. On the origin of cancer cells. Science. 1956; 123(3191): 309-314. doi: 10.1126/science.123.3191.309

Liberti M V., Locasale JW. The Warburg Effect: How does it benefit cancer cells? Trends Biochem Sci. 2016; 41(3): 211-218. doi: 10.1016/j.tibs.2015.12.001

El-Baky NA, Redwan EM. Therapeutic alpha-interferons protein: Structure, production, and biosimilar. Prep Biochem Biotechnol. 2015; 45(2): 109127. doi: 10.1080/10826068.2014.907175

Hsu WC, Chien YC, Chang CH, Yuan TT, Lee TW, Hwang JJ. Characteristic comparison between 131I-Interferon-α and 131I-interferon-αimmunoglobulin-Fc hybrid protein in rats using molecular imaging. In Vivo (Brooklyn). 2015; 29(4): 445-52. doi: PMID: 26130789.

Bontkes HJ, Ruizendaal JJ, Kramer D, Meijer CJLM, Hooijberg E. Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles. Gynecol Oncol. 2005; 96(3): 897-901. doi: 10.1016/j.ygyno.2004.10.040

Lenz P, Lowy DR, Schiller JT. Papillomavirus virus-like particles induce cytokines characteristic of innate immune responses in plasmacytoid dendritic cells. Eur J Immunol. 2005; 35(5): 1548-1556. doi: 10.1002/eji.200425547

Yang R, Murillo FM, Cui H, Blosser R, Uematsu S, Takeda K, et al. Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce Alpha interferon and Th1 immune responses via MyD88. J Virol. 2004; 78(20): 11152-11160. doi: 10.1128/JVI.78.20.11152-11160.2004

Sen E, McLaughlin-Drubin M, Meyers C. Efficacy of two commercial preparations of interferon-α on human papillomavirus replication. Anticancer Res. 2005; 25(2A): 1091-1100.

Tummers B, Goedemans R, Pelascini LPL, Jordanova ES, Van Esch EMG, Meyers C, et al. The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFκB activation. Nat Commun. 2015; 13(6): 6537. doi: https://doi.org/10.1038/ncomms7537

Richards KH, Wasson CW, Watherston O, Doble R, Eric Blair G, Wittmann M, et al. The human papillomavirus (HPV) E7 protein antagonises an Imiquimod-induced inflammatory pathway in primary human keratinocytes. Sci Rep. 2015; 5:12922. doi: https://doi.org/10.1038/srep12922

Chang YE, Laimins LA. Microarray Analysis Identifies Interferon-Inducible Genes and Stat-1 as Major Transcriptional Targets of Human Papillomavirus Type 31. J Virol. 2000; 74(9): 4174-4182. doi: 10.1128/jvi.74.9.4174-4182.2000

Aebi M, Fäh J, Hurt N, Samuel CE, Thomis D, Bazzigher L, et al. cDNA structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol. 1989; 9(11): 5062-5072. doi: 10.1128/mcb.9.11.5062-5072.1989

Voelkel JG, Hogan TF. Comparative antiproliferative activity in vitro of natural interferons a and β for diploid and transformed human cells. Cancer Res. 1982;42(12):4948–53. PMID: 7139598.

Zhang H, Koty PP, Mayotte J, Levitt ML. Induction of multiple programmed cell death pathways by IFN-β in human non-small-cell lung cancer cell lines. Exp Cell Res. 1999; 247(1): 133-141. doi: 10.1006/excr.1998.4329

Gross G. Interferons in Genital HPV Disease. (eds) Genital Papillomavirus Infections. Springer, Berlin, Heidelberg. 1990; 393-412. doi: https://doi.org/10.1007/978-3-642-75723-5_29

Gross G. Therapy of human papillomavirus infection and associated epithelial tumors. Intervirology. 1997; 40(5-6): 368-377. doi: 10.1159/000150569

Chang YE, Pena L, Sen GC, Park JK, Laimins LA. Long-Term Effect of Interferon on Keratinocytes That Maintain Human Papillomavirus Type 31. J Virol. 2002;76(17): 8864-8874. doi: 10.1128/jvi.76.17.8864-8874.2002

Herdman TM, Pett MR, Roberts I, Alazawi WOF, Teschendorff AE, Zhang XY, et al. Interferon-β treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. Carcinogenesis. 2006; 27(11): 2341-2353. doi: 10.1093/carcin/bgl172

Warren CJ, Griffin LM, Little AS, Huang IC, Farzan M, Pyeon D. The antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human papillomavirus, cytomegalovirus and adenovirus. PLoS One. 2014; 9(5): e96579. doi: 10.1371/journal.pone.0096579

Vartanian JP, Guétard D, Henry M, Wain-Hobson S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science. 2008; 320(5873): 230-233. doi: 10.1126/science.1153201

Monjurul AM, Wakae K, Wang Z, Kitamura K, Liu G, Koura M, et al. APOBEC3A and 3C decrease human papillomavirus 16 pseudovirion infectivity. Biochem Biophys Res Commun. 2015; 457(3): 295-229. doi: 10.1016/j.bbrc.2014.12.103

de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I Interferon Receptors: Biochemistry and Biological Functions. J Biol Chem. 2007; 282(28): 20053-20057.

Hardy MP, Owczarek CM, Jermiin LS, Ejdebäck M, Hertzog PJ. Characterization of the type I interferon locus and identification of novel genes. Genomics. 2004; 84(2): 331-345.

Peng FW, Duan ZJ, Zheng LS, Xie ZP, Gao HC, Zhang H, et al. Purification of recombinant human interferon-ε and oligonucleotide microarray analysis of interferon-ε-regulated genes. Protein Expr Purif. 2007; 53(2): 356-362.

Peng F, Gao H, Xie Z, Zhang H, Li Q, Duan Z, et al. Biological activities of recombinant human interferon Epsilon. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2005; 19(3): 227-231.

Matsumiya T, Prescott SM, Stafforini DM. IFN-epsilon mediates TNF-alpha-induced STAT1 phosphorylation and induction of retinoic acid-inducible gene-I in human cervical cancer cells. J Immunol. 2007; 179(7): 4542-4549.

Xi Y, Day SL, Jackson RJ, Ranasinghe C. Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol. 2012; 5(6): 610-622.

Sharkey DJ, Macpherson AM, Tremellen KP, Robertson SA. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. MHR Basic Sci Reprod Med. 2007; 13(7): 491-501. doi: https://doi.org/10.1093/molehr/gam028

Nickodem C, Criscitiello MF, Bazer F, Abiodun-Ojo O, Taylor BD. Interferon epsilon in the reproductive tract of healthy and genital herpes simplex virus-infected pregnant women: Results of a pilot study. Am J Reprod Immunol. 2018; 80(3): e12995. doi: 10.1111/aji.12995

Baeten JM, Nyange PM, Richardson BA, Lavreys L, Chohan B, Martin HL, et al. Hormonal contraception and risk of sexually transmitted disease acquisition: Results from a prospective study. Am J Obstet Gynecol. 2001; 185(2): 380-385.

Garcia-Minambres A, Eid SG, Mangan NE, Pade C, Lim SS, Matthews AY, et al. Interferon epsilon promotes HIV restriction at multiple steps of viral replication. Immunol Cell Biol. 2017; 95(5): 478-483.

Smith JS, Muñoz N, Herrero R, Eluf‐Neto J, Ngelangel C, Franceschi S, et al. Evidence for Chlamydia trachomatis as a Human Papillomavirus Cofactor in the Etiology of Invasive Cervical Cancer in Brazil and the Philippines. J Infect Dis. 2002; 185(3): 324-331. doi: 10.1086/338569

Dı́az MO, Pomykala HM, Bohlander SK, Maltepe E, Malik K, Brownstein B, et al. Structure of the Human Type-I Interferon Gene Cluster Determined from a YAC Clone Contig. Genomics. 1994; 22(3): 540-552.

Habiger C, Jäger G, Walter M, Iftner T, Stubenrauch F. Interferon Kappa Inhibits Human Papillomavirus 31 Transcription by Inducing Sp100 Proteins. J Virol. 2016; 90(2): 694-704.

Nardelli B, Zaritskaya L, Semenuk M, Cho YH, LaFleur DW, Shah D, et al. Regulatory effect of IFN-κ, a novel type I IFN, on cytokine production by cells of the innate immune system. J Immunol. 2002; 169(9): 4822-4830.

Harley ITW, Niewold TB, Stormont RM, Kaufman KM, Glenn SB, Franek BS, et al. The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus. J Biomed Biotechnol. 2010; 2010: 1-11. doi: 10.1155/2010/706825

Liu C, Batliwalla F, Li W, Lee A, Roubenoff R, Beckman E, et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol Med. 2008; 14(9-10): 575-581. doi: 10.2119/2008-00056.Liu.

Scarponi C, Nardelli B, Lafleur DW, Moore PA, Madonna S, De Pità O, et al. Analysis of IFN- κ Expression in Pathologic Skin Conditions: Downregulation in Psoriasis and Atopic Dermatitis. J Interf Cytokine Res. 2006; 26(3): 133-140. doi: 10.1089/jir.2006.26.133

Sunthamala N, Thierry F, Teissier S, Pientong C, Kongyingyoes B, Tangsiriwatthana T, et al. E2 Proteins of High Risk Human Papillomaviruses Down-Modulate STING and IFN-κ Transcription in Keratinocytes. Zhang L, editor. PLoS One. 2014; 9(3): e91473. doi: https://doi.org/10.1371/journal.pone.0091473

Woodby BL, Songock WK, Scott ML, Raikhy G, Bodily JM. Induction of interferon kappa in human papillomavirus 16 infection by transforming growth factor Beta-Induced promoter demethylation. J Virol. 2018; 92(8): e01714-17. doi: 10.1128/JVI.01714-17

DeCarlo CA, Severini A, Edler L, Escott NG, Lambert PF, Ulanova M, et al. IFN-κ, a novel type I IFN, is undetectable in HPV-positive human cervical keratinocytes. Lab Investig. 2010; 90(10): 1482-1491. doi: https://doi.org/10.1038/labinvest.2010.95

Stepp WH, Meyers JM, McBride AA. Sp100 provides intrinsic immunity against human papillomavirus infection. MBio. 2013; 4(6): e00845-13. doi: 10.1128/mBio.00845-13

Terenzi F, Saikia P, Sen GC. Interferon-inducible protein, P56, inhibits HPV DNA replication by binding to the viral protein E1. EMBO J. 2008; 27(24): 3311-3321. doi: 10.1038/emboj.2008.241

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2021 Brigitte Ofelia Peña-López, Bladimiro Rincón-Orozco

Descargas

Los datos de descargas todavía no están disponibles.