Abstract
Introduction: Data quality makes it easier to ensure that observational studies are reliable. Objective: To describe assurance and quality control to maintain data reliability and validity in a cohort study. Methodology: We present the data management strategies implemented in a study that followed patients of chronic kidney disease who were in a renal protection program and compared them with those undergoing conventional treatment to observe its association with clinical outcomes. We assessed the changes in error frequency after implementing the plan along with the reproducibility of the strategies for entering records into the databases. Results: We documented a progressive decrease of data collection errors. The Kappa values among data collectors for the most important variables were: 0.960 for creatinine clearance <60 ml/min; 0.942 for renal ultrasound alteration; 0.871 for proteinuria >150 mg / dl; 0.730 for urinary sediment alteration and 0.956 for stage allocation upon admission. The intraclass correlation coefficient for the identification of systolic blood pressure was 0.996; for diastolic blood pressure, the coefficient was 0.993 and for serum creatinine levels at diagnosis, the value was 0.995. Discussion: Data quality begins with the recognition of the challenges and difficulties involved in responsible data collection, hence the contribution of standardized processes and personnel to carry them out in a suitable manner. Studies show that many improvement processes arise in the development of research without pre-established protocols. Conclusion: The reduction in error ratio and type during the data collection process are the result of the early identification of erroneously entered or missing data, the correction of the guidelines for completing forms as well as of the instruments for detecting errors and continuous training of the staff. The analysis showed good inter-rater reliability.
References
Patanwala A. A practical guide to conducting and writing medical record review studies. Am J Health Syst Pharm. 2017; 74(22): 1853-1864. doi: https:// doi.org/10.2146/ajhp170183
Ligthelm R, Borzì V, Gumprecht J, Kawamori R, Wenying Y, Valensi P. Importance of observational studies in clinical practice. Clin Ther. 2007; 29(6): 1284-1292. doi: https://doi.org/10.1016/j.clinthera.2007.07.004
Lazcano-Ponce E, Fernández E, Salazar-Martínez E, Hernández-Avila M. Estudios de cohorte. Metodología, sesgos y aplicación. Salud Publica Mex. 2000; 42(3): 230-241.
Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in Epidemiology (strobe) statement: Guidelines for Reporting Observational Studies. Int J Surg. 2014; 12(12): 1495–1499. doi: https://doi.org/10.1016/j.ijsu.2014.07.013
Dreyer N, Velentgas P, Westrich K, Dubois R. The GRACE checklist for rating the quality of observational studies of comparative effectiveness: A tale of hope and caution. J Manag Care Spec Pharm. 2014; 20(3): 301-308. doi: https://doi.org/10.18553/jmcp.2014.20.3.301
Giganti M, Shepherd B, Caro-Vega Y, Luz P, Rebeiro P, Maia M, et al. The impact of data quality and source data verification on epidemiologic inference: a practical application using HIV observational data. BMC Public Health. 2019; 19(1). doi: https://doi.org/10.1186/s12889-019-8105-2
Duda S, Shepherd B, Gadd C, Masys D, McGowan C. Measuring the quality of observational study data in an international HIV research network. PLoS One. 2012; 7(4): e33908. doi: https://doi.org/10.1371/journal.pone.0033908
Hammer GP, Prel J-Bdu, Blettner M. Avoiding bias in observational studies. Deutsches Ärzteblatt International. 2009. doi: https://doi.org/10.3238/arztebl.2009.0664
Whitney C, Lind B, Wahl P. Quality assurance and quality control in longitudinal studies. Epidemiol Rev. 1998; 20(1): 71-80. doi: https://doi. org/10.1093/oxfordjournals.epirev.a017973
Assareh H, Waterhouse M, Moser C, Brighouse R, Foster K, Smith I et al. Data quality improvement in clinical databases using statistical quality control: Review and case study. Ther Innov Regul Sci. 2013; 47(1): 70-81. doi: https://doi.org/10.1177/2168479012469957
Kuwatsuka Y. Quality control and assurance in hematopoietic stem cell transplantation data registries in Japan and other countries. Int J Hematol. 2015; 103(1): 20-24. doi: https://doi.org/10.1007/s12185-015-1896-8
Kenny A, Gordon N, Griffiths T, Kraemer J, Siedner M. Validation relaxation: A quality assurance strategy for electronic data collection. J Med Internet Res. 2017; 19(8): e297. doi: https://doi.org/10.2196/jmir.7813
Lowenstein S. Medical record reviews in emergency medicine: The blessing and the curse. Appl Nurs Res. 2005; 45(4): 452-455. doi: https://doi.org/10.1016/j.annemergmed.2005.01.032
Liddy C, Wiens M, Hogg W. Methods to achieve high interrater reliability in data collection from primary care medical records. Ann Fam Med. 2011; 9(1): 57-62. doi: https://doi.org/10.1370/afm.1195
Gregory K, Radovinsky L. Research strategies that result in optimal data collection from the patient medical record. Appl Nurs Res. 2012; 25(2): 108- 116. doi: https://doi.org/10.1016/j.apnr.2010.02.004
Vassar M, Matthew H. The retrospective chart review: important methodological considerations. J Educ Eval Health Prof. 2013; 10: 12. doi: http://dx.doi.org/10.3352/jeehp.2013.10.12
Bowling A. Mode of questionnaire administration can have serious effects on data quality. J Public Health (Oxf). 2005; 27(3): 281-291. doi: https://doi.org/10.1093/pubmed/fdi031
Gassman J, Owen W, Kuntz T, Martin J, Amoroso W. Data quality assurance, monitoring, and reporting. Control Clin Trials. 1995; 16(2): 104-136. doi: https://doi.org/10.1016/0197-2456(94)00095-K
Kodra Y, Posada de la Paz M, Coi A, Santoro M, Bianchi F, Ahmed F et al. Data quality in rare diseases registries. Adv Exp Med Biol. 2017; 149-164. doi: https://doi.org/10.1007/978-3-319-67144-4_8
Mi M, Collins J, Lerner V, Losina E, Katz J. Reliability of medical record abstraction by non-physicians for orthopedic research. BMC Musculoskelet Disord. 2013; 14(1). doi: https://doi.org/10.1186/1471-2474-14-181
Gearing R, Mian I, Barber J, Ickowicz A. A methodology for conducting retrospective chart review research in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry. 2006; 15(3): 126–134.
Wawrzyniak Z, Paczesny D, Zatónski W. Application of advanced data collection and quality assurance methods in open prospective study - a case study of PONS project. Ann Agric Environ Med. 2019; 18(2): 207-214.
Westervelt H, Bernier R, Faust M, Gover M, Bockholt H, Zschiegner R et al. Data quality assurance and control in cognitive research: Lessons learned from the PREDICT-HD study. Int J Methods Psychiatr Res. 2017; 26(3): e1534. doi: https://doi.org/10.1002/mpr.1534
Villegas Sierra L, Buriticá Agudelo M, Yepes Delgado C, Montoya Jaramillo Y, Jaimes Barragan F. Interacción entre el estadio de la enfermedad renal crónica y la diabetes mellitus como factores asociados con mortalidad en pacientes con enfermedad renal crónica: un estudio de cohortes externas. Nefrología. 2021. doi: https://doi.org/10.1016/j.nefro.2021.04.012
Grant S. Fletcher. Clinical Epidemiology: The Essentials, 6e. Lippincott, Williams & Wilkins; 2020.
Kung H, Hanzlick R, Spitler J. Abstracting Data from medical examiner/coroner reports: Concordance among abstractors and implications for data reporting. J Forensic Sci. 2001; 46(5): 15110J. doi: https://doi.org/10.1520/JFS15110J
Worster A, Bledsoe R, Cleve P, Fernandes C, Upadhye S, Eva K. Reassessing the methods of medical record review studies in emergency medicine research. Ann Emerg Med. 2005; 45(4): 448-451. doi: https://doi.org/10.1016/j.annemergmed.2004.11.021
Gillespie BW, Laurin L-P, Zinsser D, Lafayette R, Marasa M, Wenderfer SE, et al. Improving data quality in observational research studies: Report of the cure glomerulonephropathy (CUREGN) network. Contemporary Clinical Trials Communications. 2021; 22: 100749. doi: https://doi.org/10.1016/j.conctc.2021.100749
Dyck M, Culp K, Cacchione P. Data quality strategies in cohort studies: Lessons from a study on delirium in nursing home elders. Appl Nurs Res. 2007; 20(1): 39-43. doi: https://doi.org/10.1016/j.apnr.2006.01.004
Ercole A, Brinck V, George P, Hicks R, Huijben J, Jarrett M et al. Guidelines for data acquisition, quality and curation for observational research designs (DAQCORD). J Clin Transl Sci. 2020; 4(4): 354-359. doi: https://doi.org/10.1017/cts.2020.24
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Carlos Enrique Yepes-Delgado, Simón Muñoz-González, John Jairo Zuleta-Tobón