Vol. 22 No. 3 (2023): Revista UIS Ingenierías
Articles

Advanced Oxidation Processes Used in The Treatment of Perfluoroalkylated Substances in Water

María Lizeth Marín-Marín
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Gustavo Peñuela
Universidad de Antioquia

Published 2023-08-23

Keywords

  • perfluorinated substances,
  • advanced oxidation processes,
  • efficiency,
  • water treatment,
  • perfluorooctanoic acid,
  • perfluorooctanesulfonic acid
  • ...More
    Less

How to Cite

Marín-Marín, M. L. ., Rubio-Clemente, A., & Peñuela, G. (2023). Advanced Oxidation Processes Used in The Treatment of Perfluoroalkylated Substances in Water. Revista UIS Ingenierías, 22(3), 135–150. https://doi.org/10.18273/revuin.v22n3-2023010

Abstract

Perfluoroalkylated and polyfluoroalkylated substances (PFAS) are a large family of synthetic chemicals widely used to manufacture various commercial products. However, they are hazardous to health and the environment. These substances are very persistent and their degradation requires advanced degradation techniques. One of the most widely used technologies for this purpose is advanced oxidation processes (AOP). This study aims to evaluate the use of AOP in PFAS degradation based on their efficiency, parameters influencing each process, advantages, disadvantages, and associated research challenges. According to the results, plasma, electrochemical oxidation, sonochemical oxidation, and heterogeneous photocatalysis stand out among the AOP applied for PFAS degradation. In addition, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were found to be the main toxic compounds studied. In this regard, future research should focus on a wider variety of PFAS. Finally, the drawbacks associated with the application of these processes to eliminate the substances of interest were found to be an urgent need to be overcome.

Downloads

Download data is not yet available.

References

  1. R. C. Buck et al., “Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins,” Integr Environ Assess Manag, vol. 7, no. 4, pp. 513–541, 2011, doi: https://doi.org/10.1002/ieam.258
  2. A. de la Torre, I. Navarro, P. Sanz, M. de los Á. Mártinez, “Occurrence and human exposure assessment of perfluorinated substances in house dust from three European countries,” Science of The Total Environment, vol. 685, pp. 308–314, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.05.463
  3. D. Palma et al., “PFAS degradation in ultrapure and groundwater using non-thermal plasma,” Molecules, vol. 26, no. 4, pp. 1–13, 2021, doi: https://doi.org/10.3390/molecules26040924
  4. M. Trojanowicz et al., “A survey of analytical methods employed for monitoring of Advanced Oxidation/Reduction Processes for decomposition of selected perfluorinated environmental pollutants,” Talanta, vol. 177, pp. 122–141, 2018, doi: https://doi.org/10.1016/j.talanta.2017.09.002
  5. J. M. Monteagudo, H. El-taliawy, A. Durán, G. Caro, K. Bester, “Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved,” J Hazard Mater, vol. 357, pp. 457–465, 2018, doi: https://doi.org/10.1016/j.jhazmat.2018.06.031
  6. X. Wang, Z. Chen, Y. Wang, W. Sun, “A review on degradation of perfluorinated compounds based on ultraviolet advanced oxidation,” Environmental Pollution, vol. 291, p. 118014, Dec. 2021, doi: https://doi.org/10.1016/J.ENVPOL.2021.118014
  7. G. Cruz, C. Julcour, U. Jáuregui, “El Estado actual y perspectivas de la degradación de pesticidas por procesos avanzados de oxidación State of the art and perspectives of pesticides degradation by advanced oxidation processes Resumen,” Revista Cubana de Química, vol. 29, no. 3, pp. 492–516, 2017.
  8. Á. Soriano, D. Gorri, A. Urtiaga, “Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate,” Water Res, vol. 112, pp. 147–156, 2017, doi: https://doi.org/10.1016/j.watres.2017.01.043
  9. B. Xu, M. B. Ahmed, J. L. Zhou, A. Altaee, M. Wu, G. Xu, “Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors,” Chemosphere, vol. 189, pp. 717–729, 2017, doi: https://doi.org/10.1016/j.chemosphere.2017.09.110
  10. W. Wang, M. Chen, D. Wang, M. Yan, Z. Liu, “Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates,” Science of the Total Environment, vol. 772, p. 145522, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.145522
  11. D. M. Wanninayake, “Comparison of currently available PFAS remediation technologies in water: A review,” J Environ Manage, vol. 283, no. October 2020, p. 111977, 2021, doi: https://doi.org/10.1016/j.jenvman.2021.111977
  12. T. Shende, G. Andaluri, R. P. S. Suri, “Kinetic model for sonolytic degradation of non-volatile surfactants: Perfluoroalkyl substances,” Ultrason Sonochem, vol. 51, pp. 359–368, Mar. 2019, doi: https://doi.org/10.1016/J.ULTSONCH.2018.08.028
  13. S. Sharma, N. P. Shetti, S. Basu, M. N. Nadagouda, T. M. Aminabhavi, “Remediation of per- and polyfluoroalkyls (PFAs) via electrochemical methods,” Chemical Engineering Journal, vol. 430, no. P2, p. 132895, 2021, doi: https://doi.org/10.1016/j.cej.2021.132895
  14. M. Saleem et al., “Comparative performance assessment of plasma reactors for the treatment of PFOA; reactor design, kinetics, mineralization and energy yield,” Chemical Engineering Journal, vol. 382, p. 123031, 2020, doi: https://doi.org/10.1016/j.cej.2019.123031
  15. F. Lopes da Silva, T. Laitinen, M. Pirilä, R. L. Keiski, S. Ojala, “Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA) From Wastewaters by TiO2, In2O3 and Ga2O3 Catalysts,” Top Catal, vol. 60, no. 17–18, pp. 1345–1358, 2017, doi: https://doi.org/10.1007/s11244-017-0819-8
  16. H. Cao, W. Zhang, C. Wang, Y. Liang, “Sonochemical degradation of poly- and perfluoroalkyl substances – A review,” Ultrason Sonochem, vol. 69, p. 105245, Dec. 2020, doi: https://doi.org/10.1016/J.ULTSONCH.2020.105245
  17. M. I. Litter, “Introduction to Photochemical Advanced Oxidation Processes for Water Treatment,” Environmental Photochemistry Part II, vol. 2, no. September, pp. 325–366, 2005, doi: https://doi.org/10.1007/b138188
  18. O. C. Olatunde, A. T. Kuvarega, D. C. Onwudiwe, “Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl substances,” Heliyon, vol. 6, no. 12, 2020, doi: https://doi.org/10.1016/j.heliyon.2020.e05614
  19. S. Yadav et al., “Updated review on emerging technologies for PFAS contaminated water treatment,” Chemical Engineering Research and Design, vol. 182, pp. 667–700, Jun. 2022, doi: https://doi.org/10.1016/J.CHERD.2022.04.009
  20. Z. Hajalifard, S. Kazemi, S. Eftekhari, S. Rezaei, M. Mousazadeh, M. Usman, “Per- and polyfluoroalkyl substances degradation using hydroxyl- and sulphate- radical-based advanced oxidation from water matrices: which one is the best approach?,” International Journal of Environmental Analytical Chemistry, doi: https://doi.org/10.1080/03067319.2023.2225412
  21. B. Saawarn, B. Mahanty, S. Hait, S. Hussain, “Sources, occurrence, and treatment techniques of per- and polyfluoroalkyl substances in aqueous matrices: A comprehensive review,” Environ Res, vol. 214, p. 114004, 2022, doi: https://doi.org/10.1016/J.ENVRES.2022.114004
  22. L. F. Garcés, E. A. Mejía, J. J. Santamaría, “Photocatalysis as an alternative to treat waste water,” Revista Lasallista, vol. 1, no. 1, pp. 83–92, 2004.
  23. J. C. Gómez Umaña, L. F. Chacón Páez, “Degradación fotocatalítica homogénea y heterogénea de vapor condensado de cocción generado en el procesamiento de subproductos avícolas,” trabajo de grado, Unilibre, 2014.
  24. A. O. Ibhadon, P. Fitzpatrick, “Heterogeneous photocatalysis: Recent advances and applications,” Catalysts, vol. 3, no. 1, pp. 189–218, 2013, doi: https://doi.org/10.3390/catal3010189
  25. K. Zhang, Sumita, C. Li, C. Sun, N. Marmier, “A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process,” Water 2022, Vol. 14, Page 2692, vol. 14, no. 17, p. 2692, 2022, doi: https://doi.org/10.3390/W14172692
  26. D. Leonello, M. A. Fendrich, F. Parrino, N. Patel, M. Orlandi, A. Miotello, “Light-induced advanced oxidation processes as pfas remediation methods: A review,” Applied Sciences (Switzerland), vol. 11, no. 18. p. 8458, 2021. doi: https://doi.org/10.3390/app11188458
  27. M. B. Ahmed et al., “Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water,” Process Safety and Environmental Protection, vol. 136, pp. 1–14, Apr. 2020, doi: https://doi.org/10.1016/j.psep.2020.01.005
  28. J. N. Meegoda, B. Bezerra de Souza, M. M. Casarini, J. A. Kewalramani, “A Review of PFAS Destruction Technologies,” International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 16397, vol. 19, no. 24, p. 16397, 2022, doi: https://doi.org/10.3390/IJERPH192416397
  29. S. Verma, R. S. Varma, M. N. Nadagouda, “Remediation and mineralization processes for per- and polyfluoroalkyl substances (PFAS) in water: A review,” Sci Total Environ, vol. 794, p. 148987, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.148987
  30. T. G. Ambaye, M. Vaccari, S. Prasad, S. Rtimi, “Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water,” Environmental Science and Pollution Research 2022 29:39, vol. 29, no. 39, pp. 58405–58428, 2022, doi: https://doi.org/10.1007/S11356-022-21513-2
  31. J. John, F. Coulon, P. V. Chellam, “Detection and treatment strategies of per- and polyfluoroalkyl substances (PFAS): Fate of PFAS through DPSIR framework analysis,” Journal of Water Process Engineering, vol. 45, p. 102463, 2022, doi: https://doi.org/10.1016/J.JWPE.2021.102463
  32. J. Madhavan, J. Theerthagiri, D. Balaji, S. Sunitha, “Hybrid Advanced Oxidation Processes Involving Ultrasound: An Overview,” Molecules, vol. 24, pp. 1–18, 2019.
  33. S. C. Panchangam, A. Y. C. Lin, J. H. Tsai, C. F. Lin, “Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid,” Chemosphere, vol. 75, no. 5, pp. 654–660, 2009, doi: https://doi.org/10.1016/j.chemosphere.2008.12.065
  34. M. A. Foote, “Comparative Analysis of Treatment Technologies for Per- and Polyfluorinated Substances in Water”, Thesis, Worcester Polytechnic Institute, 2020.
  35. S. Verma, T. Lee, E. Sahle-Demessie, M. Ateia, M. N. Nadagouda, “Recent advances on PFAS degradation via thermal and nonthermal methods,” Chemical Engineering Journal Advances, vol. 13, p. 100421, Mar. 2023, doi: https://doi.org/10.1016/J.CEJA.2022.100421
  36. J. Cheng, C. D. Vecitis, H. Park, B. T. Mader, M. R. Hoffmann, “Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: Kinetic effects of matrix inorganics,” Environ Sci Technol, vol. 44, no. 1, pp. 445–450, 2010, doi: https://doi.org/10.1021/es902651g
  37. S. C. E. Leung et al., “Emerging technologies for PFOS/PFOA degradation and removal: A review,” Science of The Total Environment, vol. 827, p. 153669, Jun. 2022, doi: https://doi.org/10.1016/J.SCITOTENV.2022.153669
  38. J. N. Meegoda, J. A. Kewalramani, B. Li, R. W. Marsh, “A review of the applications, environmental release, and remediation technologies of per-and polyfluoroalkyl substances,” International Journal of Environmental Research and Public Health, vol. 17, no. 21. pp. 1–26, 2020. doi: https://doi.org/10.3390/ijerph17218117
  39. S. Pilli et al., “Detection and removal of poly and perfluoroalkyl polluting substances for sustainable environment,” J Environ Manage, vol. 297, no. July, p. 113336, Nov. 2021, doi: https://doi.org/10.1016/j.jenvman.2021.113336
  40. H. He et al., “Environmental occurrence and remediation of emerging organohalides: A review,” Environmental Pollution, vol. 290, p. 118060, 2021, doi: https://doi.org/10.1016/J.ENVPOL.2021.118060
  41. J. J. Pignatello, E. Oliveros, A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Crit Rev Environ Sci Technol, vol. 36, no. 1, pp. 1–84, 2006, doi: https://doi.org/10.1080/10643380500326564
  42. H. Tang, Q. Xiang, M. Lei, J. Yan, L. Zhu, J. Zou, “Efficient degradation of perfluorooctanoic acid by UV-Fenton process,” Chemical Engineering Journal, vol. 184, pp. 156–162, 2012, doi: https://doi.org/10.1016/j.cej.2012.01.020
  43. J. Radjenovic, D. L. Sedlak, “Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water,” Environ Sci Technol, vol. 49, no. 19, pp. 11292–11302, 2015, doi: https://doi.org/10.1021/acs.est.5b02414
  44. A. N. Marquínez-Marquínez, N. S. Loor-Molina, L. S. Quiroz-Fernández, N. R. Maddela, R. Luque, J. M. Rodríguez-Díaz, “Recent advances in the remediation of perfluoroalkylated and polyfluoroalkylated contaminated sites,” Environ Res, vol. 219, p. 115152, 2023, doi: https://doi.org/10.1016/J.ENVRES.2022.115152
  45. RAI, “Oxidación electroquímica,” 2021. http://diccionario.raing.es/es/lema/oxidación-electroquímica
  46. A. Román, P. Baldaguez, X. Su, “Electrochemical remediation of perfluoroalkyl substances from water,” Electrochim Acta, vol. 403, p. 139635, 2022, doi: https://doi.org/10.1016/J.ELECTACTA.2021.139635
  47. Y. Yang, “Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control,” Front Environ Sci Eng, vol. 14, no. 5, 2020, doi: https://doi.org/10.1007/s11783-020-1264-7
  48. D. Lu, S. Sha, J. Luo, Z. Huang, X. Zhang Jackie, “Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): A critical review,” J Hazard Mater, vol. 386, no. October 2019, p. 121963, 2020, doi: https://doi.org/10.1016/j.jhazmat.2019.121963
  49. S. P. Lenka, M. Kah, L. P. Padhye, “A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants,” Water Res, vol. 199, p. 117187, 2021, doi: https://doi.org/10.1016/j.watres.2021.117187
  50. J. Qiao, Y. Xiong, “Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants,” Journal of Water Process Engineering, vol. 44, no. September, p. 102308, 2021, doi: https://doi.org/10.1016/j.jwpe.2021.102308
  51. D. Palma, C. Richard, M. Minella, “State of the art and perspectives about non-thermal plasma applications for the removal of PFAS in water,” Chemical Engineering Journal Advances, vol. 10, p. 100253, May 2022, doi: https://doi.org/10.1016/J.CEJA.2022.100253
  52. B. Topolovec, N. Škoro, N. Puаč, M. Petrovic, “Pathways of organic micropollutants degradation in atmospheric pressure plasma processing – A review,” Chemosphere, vol. 294, p. 133606, 2022, doi: https://doi.org/10.1016/J.CHEMOSPHERE.2022.133606
  53. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J. S. Chang, “Electrohydraulic discharge and nonthermal plasma for water treatment,” Ind Eng Chem Res, vol. 45, no. 3, pp. 882–905, 2006, doi: https://doi.org/10.1021/ie050981u
  54. R. K. Singh, S. Fernando, S. F. Baygi, N. Multari, S. M. Thagard, T. M. Holsen, “Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process,” Environ Sci Technol, vol. 53, no. 5, pp. 2731–2738, 2019, doi: https://doi.org/10.1021/acs.est.8b07031
  55. H. N. Phong Vo et al., “Poly‐and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation,” Journal of Water Process Engineering, vol. 36, p. 101393, 2020, doi: https://doi.org/10.1016/j.jwpe.2020.101393
  56. Z. Gao et al., “Theoretical and experimental insights into the mechanisms of C6/C6 PFPiA degradation by dielectric barrier discharge plasma,” J Hazard Mater, vol. 424, no. PB, p. 127522, 2022, doi: https://doi.org/10.1016/j.jhazmat.2021.127522
  57. B. Ji, P. Kang, T. Wei, Y. Zhao, “Challenges of aqueous per- and polyfluoroalkyl substances (PFAS) and their foreseeable removal strategies,” Chemosphere, vol. 250, p. 126316, 2020, doi: https://doi.org/10.1016/j.chemosphere.2020.126316
  58. B. Xu, M. B. Ahmed, J. L. Zhou, A. Altaee, M. Wu, G. Xu, “Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors,” Chemosphere, vol. 189, pp. 717–729, 2017, doi: https://doi.org/10.1016/j.chemosphere.2017.09.110
  59. I. T. Cousins et al., “Strategies for grouping per-and polyfluoroalkyl substances (PFAS) to protect human and environmental health,” Environ Sci Process Impacts, vol. 22, no. 7, pp. 1444–1460, 2020, doi: https://doi.org/10.1039/d0em00147c
  60. ITRC, “Nomenclatura y propiedades químicas y físicas de las Sustancias Per-y Polifluroalquiladas (PFAS)” p. 22, 2017.
  61. F. Li et al., “Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment,” Chemical Engineering Journal, vol. 380, 2020, doi: https://doi.org/10.1016/j.cej.2019.122506
  62. S. Brendel, É. Fetter, C. Staude, L. Vierke, A. Biegel-Engler, “Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH,” Environ Sci Eur, vol. 30, no. 1, 2018, doi: https://doi.org/10.1186/s12302-018-0134-4
  63. S. Kurwadkar et al., “Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution,” Science of The Total Environment, p. 151003, Oct. 2021, doi: https://doi.org/10.1016/J.SCITOTENV.2021.151003
  64. A. Mojiri, J. L. Zhou, N. Ozaki, B. KarimiDermani, E. Razmi, N. Kasmuri, “Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes,” Chemosphere, vol. 330, p. 138666, 2023, doi: https://doi.org/10.1016/J.CHEMOSPHERE.2023.138666