Real-time PCR standardization for detection and quantification of E7 oncogenes from six High-Risk Human Papillomaviruses
PDF (Español (España))

Keywords

Papillomavirus Infections
Cervical Neoplasms
Genotyping
Real Time Polymerase Chain Reaction
E7 Oncogene

How to Cite

Martínez-Vega, . R. A. ., Peña-López, B. O., & Rincón-Orozco, B. (2023). Real-time PCR standardization for detection and quantification of E7 oncogenes from six High-Risk Human Papillomaviruses. Salud UIS, 55. https://doi.org/10.18273/saluduis.55.e:23047

Abstract

Cervical cancer is caused by persistent infection of the cervical epithelium with the high-risk genotypes of the Human Papilloma Virus (HR-HPV). For its detection, molecular tests are carried out that detect the L1 gene of HPV. This gene can be lost in up to 11 % of cases during the integration of viral DNA into the host genome, causing false negatives. On the other hand, the E7 oncogene is expressed during all stages of disease progression. The aim of this work was to standardize a real-time PCR of the E7 oncogene (E7-qPCR) for genotyping and quantification of 6 HR- HPV. The results show that the E7-qPCR amplified HPV-16, -18, -31, -33, -35 and -45 with high sensitivity with detection limits from 102 copies, efficiencies between 90 and 110 %, R2 values >0,97 and melting curve analysis revealing specific products.

https://doi.org/10.18273/saluduis.55.e:23047
PDF (Español (España))

References

zur Hausen H. Host cell regulation of HPV transforming gene expression. Princess Takamatsu Symp. 1989; 20: 207-219.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1; 136(5): E359–386. doi: http://doi.wiley.com/10.1002/ijc.29210

Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol. 2005 Mar 1; 32: 16–24. doi: https://doi.org/10.1016/j.jcv.2004.12.008

IARC. Age standardized (World) mortality rates, cervix uteri, all ages. Lyon: IARC, WHO; 2018. Available from: http://gco.iarc.fr/today

Ministerio de Salud y Protección Social. Lineamientos técnicos y operativos para la vacunación contra el Virus del Papiloma Humano (VPH). Bogotá: MSPS; 2012. Available from: https://www.minsalud.gov.co/salud/Documents/Lineamientos VPH.pdf

Murillo R, Wiesner C, Cendales R, Piñeros M, Tovar S. Comprehensive evaluation of cervical cancer screening programs: the case of Colombia. Salud Pública Mex. 2011; 53(6): 469–477.

Cuzick J, Sasieni P, Davies P, Adams J, Normand C, Frater A, et al. A systematic review of the role of human papilloma virus (HPV) testing within a cervical screening programme: summary and conclusions. Br J Cancer. 2000; 83(5): 561–565. doi: https://doi.org/10.1054/bjoc.2000.1375

zur Hausen H. Papillomaviruses Causing Cancer: Evasion From Host-Cell Control in Early Events in Carcinogenesis. J Natl Cancer Inst. 2000; 92(9): 690–698. doi: https://doi.org/10.1093/jnci/92.9.690

Depuydt CE, Boulet GA V, Horvath CAJ, Benoy IH, Vereecken AJ, Bogers JJ. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J Cell Mol Med. 2007; 11(4): 881–891. doi: http://doi.wiley.com/10.1111/j.1582-4934.2007.00073.x

Tjalma WAA, Depuydt CE. Cervical cancer screening: Which HPV test should be used - L1 or E6/E7? Eur J Obstet Gynecol Reprod Biol. 2013; 170(1): 45–46. doi: http://dx.doi.org/10.1016/j.ejogrb.2013.06.027

Roberts CC, Tadesse AS, Sands J, Halvorsen T, Schofield TL, Dalen A, et al. Detection of HPV in Norwegian cervical biopsy specimens with type-specific PCR and reverse line blot assays. J Clin Virol. 2006; 36(4): 277–282. doi: https://doi.org/10.1016/j.jcv.2006.03.013

Şahiner F, Kubar A, Gümral R, Ardıç M, Yiğit N, Şener K, et al. Efficiency of MY09/11 consensus PCR in the detection of multiple HPV infections. Diagn Microbiol Infect Dis. 2014; 80(1): 43–49. doi: 10.1016/j.diagmicrobio.2014.03.030

Peña López BO, Torrado García LM, Vega RAM, Rincón Orozco B. Prueba de concepto de una PCR multiplex de primera generación (cualitativa) para detección del oncogén E7 de VPHS de alto riesgo. Rev Investig Andin. 2019; 21(39): 267–288. doi: 10.33132/01248146.1569

Yang Z, He ZH, Zhang Y, Di XH, Zheng DF, Xu HH. Genetic variability in the E6 and E7 oncogenes of HPV52 and its prevalence in the Taizhou area, China. Virol J. 2022; 19(194). doi: https://doi.org/10.1186/s12985-022-01929-5

Wang X, Han S, Li X, Wang X, Wang S, Ma L. Prevalence and distribution of human papillomavirus (HPV) in Luoyang city of Henan province during 2015–2021 and the genetic variability of HPV16 and 52. Virol J. 2022; 19(1): 37. https://doi.org/10.1186/s12985-022-01759-5

Wang Y, Han S, Wang X, Song S, Wang X. Characteristics of human papillomavirus infection among females and the genetic variations of HPV18 and HPV58 in Henan province, China. Sci Rep. 2023; 13(1): 2252. doi: https://doi.org/10.1038/s41598-022-24641-4

Depuydt CE, Criel AM, Benoy IH, Arbyn M, Vereecken AJ, Bogers JJ. Changes in type-specific human papillomavirus load predict progression to cervical cancer. J Cell Mol Med. 2012; 16(12): 3096–3104. doi: https://doi.org/10.1111/j.1582-4934.2012.01631.x

McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13(4): e1006211. doi: https://doi.org/10.1371/journal.ppat.1006211

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Ruth A. Martínez-Vega, Brigitte Ofelia Peña-López, Bladimiro Rincón-Orozco

Downloads

Download data is not yet available.